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Vector Calculus

Vector Calculus

Vector Space Axioms

A set ¥V = {¢} with addition + and scalar multiplication - with scalars
from a field F is a vector space over F when

1. (V,+) is an Abelian group.

2. e scalar multiplication distributes over vector addition
e scalar addition distributes over scalar multiplication
o multiplication of scalars ‘associates’ with scalar multiplication

Recall:

e The norm (magnitude) of a vector @ is ||d]| = /> u?
o The direction vector of @ is (1/||ul|) - @

Definition (Dot Product in R™ over R)
Dot Product @7 =Y ;v = ||| ||7] cos(Lum)
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Vector Calculus

Dot Product

Proposition (Dot Product Properties)
Letu and v be in R™. Then

—

. Zuv = cos! [M] angle between vectors
u ()

—_

N

) < || || 9] Cauchy-Bunyakovsky-Schwarz inequality

w

. N@+3)| < ||| + |7 Triangle inequality; (cf. Minkowski’s inequality)

{

1

U (orthogonal) projection of & onto v

4. projz(d) =

<y
S
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e Let @ and 7 € R3; set ey, eq, e3 to be std basis vectors. Then

€1 €2 €3
UXU=|ur us us
V1 Vg U3

e Letuj to @, € R", n > 3;let {e,} = {std basis vectors}. Then

€1 ED) 000 €n

. ~ Ui,1 Uy,2 000 Ul,n
x(ul, 600 ,un_l) =

Up—-1,1 Up—-1,2 --.- Un—1,n
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Vector Calculus Functions of Two Variables

Cross Product Properties

Proposition (Cross Product Properties in R?)
Let i, v, and i be in R3. Then
la x 17}

— angle between vectors
1]l [||

1. Luv = sin_l{

2. || > a| < [lall |7

area of [u, v] = ||u x V||

£l

= —UX

<y

3. U x

(

X W) = (& X 0V) - W=0-(0xu)

<y

4.

£

U1 U us
X 7I]'> =|v1 vy V3|, volume of [ﬁ, U, u')’] = |’LT (’U X 117)|
w; w2 w3

S

5. - (

Multiple Integration Intro to Lebesgue M

leasure
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Parametric Equations

Definition (Parametrization)
Suppose f:D - R, g:D — R, and h: D — R. Then
V() = (f(2), 9(t), h(t))

fort € D is a curve (spacecurve) in R®. The fcns £, g, and h are
parametric equations for -, or a parametrization of ~.

’

1. The line segment L from « to & can be parametrized as
L(t)=d+ (d—1)-t, t €10,1]

2. T'given by f:=t—>(cos (t),sin(t)*cos (t),t*(1-t)) for
t € [0, 3.
animate (spacecurve, [f(t),t=0..3xPixk,

thickness=2],k=0..1,axes=frame,color=black, frames=30)

<
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Vector Calculus

Continuous Spacecurves

Definition
LetZ = [a,b] CR. Acurve v is

e continuous (onZ) if v can be parametrized with components that
are continuous on Z.

e smooth (on Z) if v’'s parametric components are continuously
differentiable on Z, and f'* + ¢’* + h'* > 0 for all ¢ € (a,b).

e piecewise smooth (on I) if [a, b] can be partitioned into a finite
number of subintervals on which ~ is smooth.

Note: Smooth = a particle moving parametrically along the curve
doesn’t change direction abruptly, stop mid-curve, or reverse.

Theorem

Ify(t) = (f(¢),g(t)) is smooth on [a, b], then tangent slope at
(o) is given by B _ W /AT L de

Py = (z,y) is given by de = / T when 7 # 0.
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0

I'(t) = (sin(2¢), sin(t), cos(t)) for t € [0, 27]
) =T(2m)
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A line ¢ passing through Py = (z0, yo, 20), parallel to @ = (a, b, c) # 0
has

vector form:  £4(t) = Pp+td, t € R

parametric form:  €(t) = (zo + at, yo + bt, 20 +ct),t €R
t

x(t) — xg =y(t)—y0 =Z(t)—20

symmetric form:
a b c

Let Py = (1,2,4) and direction @ = (1,2, —1).
1. 6(@) =0+t 2+ 2t, 4—1) a=(1,2,-1)

2, Ez(s)z(l—i-%&?—l-%s,él—ﬁs) @ = 1=(1,2,-1)
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Planes in R?

Theorem (The Plane, the Plane)

A plane P passing through Py = (xo, Yo, 20), normal to
i@ =(a,b,c) #0is P={X} sit.

vector form: @ - ()? — P0> =0
parametric form:  a(x — z¢) + b(y — yo) + c(z — 20) =0

A plane P passing through Py = (x0, Yo, 20), containing two vectors
wandwis P ={X} s.t

cross product form: (@ x W) - ()? = PO) =0

Problem
1. Find a plane containing the three points (1,1,0), (1,0, 1), (0,1, 1).
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sphere:

ellipsoid:

elliptic paraboloid:

hyperbolic paraboloid:

elliptic cone:

hyperboloid of 1 sheet:

hyperboloid of 2 sheets:




Vector Calculus Functions of Two Variables

Multiple Integration

Quadric Surfaces Reformed

Almost Standard Forms of Quadric Surfaces

sphere:

ellipsoid:

pr?+py? 4+ p2t =1

ar? + By? + 722 =1

elliptic paraboloid:

hyperbolic paraboloid:

ax?+By> —2z=0

ar? — By +2=0

elliptic cone:

azx? 4+ By? — 22 =0

hyperboloid of 1 sheet:

hyperboloid of 2 sheets:

ax? + By? — vz = +1

ax? + By? —v22 = -1

Intro to Lebesgue Measure

v
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Vector Calculus

Vector-Valued Functions

Notation

The standard basis vectors in R3 are
<17030>:61:i7 <07170>:62:ja <07031>:63:k

If £, g, h: D — R are real functions, then 7#: D — R3 given by
(t) = (f(£),9(t), h(t)) = f(D)i+ g(t)j + h()k
is a vector-valued function with components f, g, and h.

Definition
Let 7: D — R3 have components f, g, and h, and let ¢t be an
accumulation point of D. Then

lim 7(t) = L = Lyi+ Lyj + Lpk

t—to

iff (Ve>0) (36>0) s.t. (VteD) if 0 < |t — to| < 6, then ||7(t) — L|| < e.
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tll>ntlo 7(t) = Lgi+ Lgj + Lk
<~

lim f(t) =Ly A tliglog(t) =L, A tll>nt10 h(t) = Ly

t—to
@®

la] < Va2 +b?+c*=|(a,bc)| < [af+[b] + |
(=) (=)

O
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Vector Calculus Functions of Two Variables Multiple Integration

Algebra of Vector-Valued Function Limits

Theorem (Algebra of Vector-Valued Limits)
Suppose i, w:D — R™, k:D — R, c € R, andty € D'. Then

t—to t—to
lim [ct] =c | lim @
t—vto t—rto

lim [kd] = | lim &k

t—to t—to

lim [@- @] = |lim @
t—to t—to
lim [@ x @] = | lim @
t—to t—to

lim [i 4+ @] = [lim ﬁ] + {

t—

lim u_}}

t—to

[ lim ﬁ]
J to

. [ lim u_i]
t—to

|

lim w
t—to

()

Intro to Lebesgue Measure
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Vector Calculus

Continuity of Vector-Valued Functions

Definition (Continuity)
A function 7(t) is continuous at ty € D iff (Ve>0) (36>0) s.t. (VteD)
if [t — to] < 4, then ||7(¢) — 7(to)|| < e.
Proposition
1. A function 7(t) is continuous at an accumulation pointt, € D iff

lim 7(t) = 7(to)

t—to

2. A function 7(t) is uniformly continuous on E C D iff (Ve >0)
(E|5>0) S.t. (vttheE) If|t1 = t2| < 6, then Hf(tl) = T?(tg)H < G

3. Ifa function 7(t) is continuous on a closed and bounded set E,
then 7 is uniformly continuous on E.
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Differentiability of Vector-Valued Functions

Definition (Differentiable)
A function 7(t) is differentiable at t, € D iff the limit
#(t) = lim "D =) _ jyp, Mot ) = lto)
t—to t—to t—to h
exists and is finite.

Proposition

If f, g, and h are the components of 7, then 7 is differentiable iff f, g,
and h are differentiable, whence

() = f'(O)i+g'()j + ' (Dk.

1. Find 7/ for the line through P, = (1,2, 4) parallel to @ = (1,2, —1).
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Algebra of Vector-Valued Derivatives

Theorem (Algebra of Derivatives)
Suppose i, w: D — R™ & k: D — R are all differentiable, and ¢ € R.
Then
[@+ @) = [a@'] £ [@] (6)
[c@]) = c[u] (7)
k@] =K@+ @] (8)
[@- @) =@ &+ [d] (9)
[@x @] =[@'] x &+ x [@] (10)
g = L2 (1)
1]
[Gok] =[d@ ok]xk (12)
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Derivative Props

Properties
Suppose 7(t) is a twice differentiable vector function.
1. V(t) =7'(t) is

o the tangent vector of 7
¢ the velocity vector of ¥

and S(t) = |7/ (¢)|| gives the speed of 7(¥)
2. A(t) =V'(t) =7"(t) is

e the acceleration vector of 7

v

Find the velocity & acceleration and the speed for the function
1. 7(t) = (2cos(t), 3sin(t), o).
2. p(t) = (cos(t) - (1 + cos(t)), 2sin(t) - (1 +t),¢).!

V.

1 spacecurve (f (t),t=0..6%Pi, numpoints=101, thickness=3, axes=normal)
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Example 9.6.9

Consider i, 7, : R — R? defined by

t,t%) ift<0

i = (t,t%),7 = (t*,1°), and @& =
U= 1), 0= v {<t3,t6) ift >0

All 3 functions are continuous, all trace the parabola y = 2, and all
are0att=0.

1. 4 is differentiable at ¢ = 0 with tangent vector @’(0) = (1, 0) and
tangent line y = 0.

2. vis differentiable at ¢ = 0 with tangent vector ¢(0) = (0, 0), but
has no tangent line 0.

3. @ is not differentiable at ¢ = 0 and has no tangent line at 0.

See Maple demo
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1 ‘I

Let 7 be a differentiable vector function of t. Then ||7(¢t)|| is constant iff
7(t) -7 (t) = 0; i.e. ¥ and 7" are orthogonal.

|
L

I
o

|7()] is constant <= 7(t) - 7(t) = ¢ < 7(t)-7'(t) = 0

Unit tangent vector: T(t) = 7'(t) /||
Unit normal vector: N( t) =T'(t /||T’ t)||

V=i"andv=|V ﬂ||. Then A=V’ =ovT' +'T. Since T' L T, then
Ac =vT and A= = o' T forms an orthogonal decomp of A
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Usin
J 1 F e ol T
A'ZEN+ _”I"

1. Compute A-T?
2. What vectoris (A-T)T?

3. Compute A — ([f- f) T?

(13)
(14)

4. Apply this idea to 7(t) = (cos(t),sin(t)). What are A’s orthognal

components?




/a*(t [/ f(t)dt]l—i-[/ g(t)dt]j—l—[/abh(t)dt]k

off the integrals exist. l.e., [*(f:)(t) dt = < % fi(t)dt>.

Suppose 7(t) is integrable on [a,b] and R(t) is an antiderivative (or primitive)

for 7. Then b oo L .
/ Ft)dt = Bw)| = Rp) - Rla)

Suppose 7(t) is integrable on [a, b]. Then

[ a] < [ @
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Vector Calculus

Arclength

Definition (Arclength)

Let v(t) = 7(t) be a smooth curve on [a, b]. The length of y on [a, b] is
L(y) =sup{Lg | Q partitions [a, b]}

where Lo = 3, |[7v(tk) — v(te—1) | for tx € Q.

Proposition

Let~(t) = 7(t) be a smooth curve on [a,b]. The length of y on [a, b] is
L(v) = lim|g|—0 Lg where |Q| is the norm of the partition.

Theorem (Useful Arclength Theorem)
Let~(t) = 7(t) be a smooth curve on [a,b]. The length of v on [a, b] is

v =[S, Era= [ IF o) @
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Proof

Proof (UAT).
I. Let @Q be a partition. Fix k. Whereupon

\/Zj (£ () = £i (ts-2)) = |[7(t) = 7(te-1)l| =

/F’dtHg/H /|| dt, then L(5 /H (o] dt.

Il. Let e >0. Choose § >0 s.t. ||7(s)— 7(t)|| <e for |s — t| < 4. Choose |Q| < 4.
tet1 , 41 , 41 ,
1. / 17 (t)|] e g/ 17 ()| +e de :/ 7 (bya)|| db+e Aty
th tr tr

tht1 te1
/ F’(t)dtH + ‘/ [7 (thgr) — 7' (¢)] dtH +e Aty
th tr

b
3. Il ~ 7l + 2580 = [ @]t < Lo +26(6~ 0

tr
/ 7' (t) dt
tp—1

Since

2 <

Hence/ |7 (t)|| dt < L(). O
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Vector Calculus Functions of Two Variables Multiple Integration

Rectified

Definition (Recifiable Curve)
A curve « is rectifiable iff L(~y) is finite.

Intro to Lebesgue Measure

l. Let (t) = (cos(nt), sin(nt), v/37t) on [0, 1].

1L / I (8] dt

2. / H — sin(nt), cos(mt), V3 H dt = 2m

II. Let ¢ (t) = (tan(¢), 1 — sin(¢), cos(t)) on [0, w/2].

= / 1/ ()] dt
0

2. :/0 I[{sec®(£), — cos(t), — sin(®))|| dt = oo

4

2 Maple worksheet
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© VectorCaleuis ~ Functionsof Two Variables ~ Muliplelntegration ~~ Intro to Lebesgue Measure
Let 7(t) be Riemann lntegrable on [a,b]. Then ||7(¢)|| is integrable and
< [ a

I ||7(¢)|| is integrable: v/
[ ([ +(['s)
< \//:<f2>+/ab(gz) - \//ab(f2+92)

b b
< / VT E = / 17 dt. O

F(t) dt

Il. (R).
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Vector Calculus

Reparametrize

Definition
Two parametrizations ~; on [a, b] and 2 on [e, d] of a curve are

equivalent iff there is a continuously differentiable bijection
u:[e,d] — [a,b] such that u(c) = a, u(d) = b, and v = 1 o u.

Theorem

Suppose v, and ~, are equivalent smooth parametrizations of a
curve. Then L(~y1) = L(v2)-

Proof.
Let v be the equivalence bijection for v; and 2. Then

L) /H%\W /wn /(0)\ldt

=/H%wmwwww=/wmwm=Lm> .
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Vector Calculus Functions of Two Variables Multiple Integration

Parametrization by Arclength

Definition (Arclength Parameter)

Set 4(t f |7"(t)||dt. Then ¢ is continuous, differentiable, a

buectlon and increasing = it has an inverse ¢=1:[0, L(v)] — [a, b].

So yo¢~1:]0, L(v)] — R™ is the arclength parametrization of ~.

Intro to Lebesgue Measure

v

Let 7(¢) = (cos(t), sin(¢), t/3) on [—4m, 4x].
1. Whence ||q/( )l = [I{=sin(t), cos(t), 1/3) || = V10/3.
2. Hence ((t) = ', V/10/3dt = v/10/3 - (t + 4m).

3. Fortwtously, £is algebralcally invertible (usually not true!) and

~1(s) = (3/+/10)s — 4.

4. Whereupon the arc length parametrized form of v is

7(5):<Cos<¢%5>’Sin(¢%s)v¢%3_§ > on [0’@

Maple

MAT 5620: 28


http://www.mathsci.appstate.edu/~wmcb/Class/5620/MapleWorksheets/

. VectorCalouus  Functonsof TwoVariables ~ Multplelntegration ~ Introto Lebesgue Measure

19 1
08 08
0.6 06
0.4 n;)o 04
024 02
04

0 02 04 056 0% 0 02 04 06 0% i

Maple
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Interlude: Inner Products

Definition (Inner Product)

Suppose that @, 7, and « are vectors in a vector space V' over the
field F', and that ¢ € F'is a scalar. An inner product is a function
(-,-):V x V — F such that

1. (@, @) = (W, u) commutivity
2. (U+0,%W) = (u,w) + (0,0) additivity
bi-linearity
3. (cu,v) =c(u,v) scalar homogeneity
4. (4, 4y >0 . -
~ positive definite
5. (@, @)=0iffu=0

v

1. The usual dot product on R?’

2. For p(z Za]:cj,q Zb 2l e P, set (p, ¢q Za, ;-

<
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Interlude: Orthogonality

Proposition

Suppose that f(z), g(z):[a,b] — R are (piecewise) continuous
functions. Then

b
(f.g) = / f@)a(x) de

is an inner product on the vector space of (piecewise) continuous
functions on [a, b]

Definition (Orthogonal Vectors)

Suppose that @ and @ are vectors in a vector space V' over the field
F. Then @ is orthogonal to i iff (@, @) = 0.

v

1. (sin, cos) :/ sin(f) cos(f) df = 0 = sine L cosine on [—m, 7]

—T

v

MAT 5620: 31



Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Interlude: Orthogonal Polynomials

The Legendre polynomials are orthogonal on [—1, 1] wrt (f, g) f fgdz.
Two formulas for the Legendre polynomials P, are
1. Rodrigues’ formula: 2: ' d[fc” [( -1) ]
2. recurrence relation: (n + 1) Pot1(z) = (2n + 1) z Pa(z) — nPp—1(x).
Py(z)=1
Pi(z)= =z
Py(z) = % (32> —1)
Ps(z) = 1 (52° — 32)
Py(z) = % (352" —302° + 3)
Ps(z) = % (632 — 70z® + 15z)
Ps(z) = = (231z° — 315z* + 1052 — 5)
Pr(z) = & (42827 — 6932° + 3152° — 357)
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Interlude: Expansions in Legendre Polynomials

Proposition (Orthonormalized Legendre Polynomials)
Letpn(x) =1/ % : Pn(x) Then <pnvpm> = 5m,n-

Theorem
Let f be integrable on [-1,1], and set a,, = (f,pn). Then

z) = anpn() — f(@)
k=0

For f(x) = sin(wz) 0

] we have

[ofo

s T

—15),0, % (n* — 1057° +945) ,0,...

) b

n [0,
sng() = 8 ) o Q(w —15) pa(a) = — BB 4 B 15 43
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f(z) = sin(mx)
f3(z): Legendre expansion

Ts(z): Taylor expansion
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Vector Calculus

Functions of Two Variables Multiple Integration

Basic Topology of R™

Definition (Total Recall:)

Open ball:
Punct'd ball:
Interior point:

Open set:

B(@r)={Z|||Z-dl <r} S R"
B@r)={Z|0< ||Z-2|| <7} CR"

d € int(S) iff 3¢ >0 such that B(a;e) C S
S is open iff S = int(.S)

Intro to Lebesgue

NB: & ¢ B'(&;r)

Accum point:
Derived set:
Closed set:

Closure:

a in an accumulation pt of S iff Ve >0 [B’(a;e) N S] # 0

S’ = {all accumulation pts of S}
S is closediff S’ C S

The closure of Sis S =SU S’

Boundary pt:

Boundary:

Isolated pt:

bis a boundary pt of S iff B(b; <) contains points both of S

and S complement for all e >0

0S5 = {all boundary pts of S}

a in an isolated ptof S iff 3e >0 [B'(a@;e) N S] =0

Measure

v
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Vector Calculus Functions of Two Variables Multiple Integration

Proper Stichens

Proposition (Open Sets)

1. If T is an indexing set for a family of open sets {O;}, then the set
O = O; is open. (Arbitrary unions of open sets are open.)

i€T

2. If{O;}i=, is a finite family of open sets, then O = ﬁ O, is open.

=1

(Finite intersections of open sets are open.)
”

Intro to Lebesgue Measure

1. Let Oy = (—z,z) forz € (0,1) = Z. Then

Joi=7 (0: =7

i€L 1€

2. LetP=(-1—%1-1)fori=1..n. Then

ﬂP,—:? UP,-:?

i=1 =1

.
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Closed to Stichens

Proposition (Closed Sets)

1. If T is an indexing set for a family of closed sets { F;}, then the set

F = () F is closed. (Arbitrary intersections of closed sets are closed.)
1€T

2. If{F;};-, is a finite family of closed sets, then O = CJ F; is closed.

1=1
(Finite unions of closed sets are closed.)
”

1. Let Fy = [-1+ 4,1 — 1] for k € N. Then

%
() F=1 UF =7

keN keN

2. LetH; = [-1,1— 1] fori = 1..n. Then

ﬂHi:? UHi:?
i=1

4

MAT 5620: 38


http://www.streetmap.co.uk/map.srf?x=620500&y=274500&z=120&sv=reading&st=3&tl=Map+of+Reading+Green,+Suffolk+&searchp=ids.srf&mapp=map.srf

A bounded, infinite subset of R™ has an accumulation point.

Lion in the desert.

A subset of R" is compact iff it is closed and bounded.

Let {F}} be a sequence of nested (Fi.+1 C F}), closed, nonempty sets for
k € N with Fy being bounded. Then

F= ﬁ Fy
k=1

is closed and nonempty.
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Functions of Two Variables

CIT

Proof. (Cantor Intersection Theorem).
l. If Fis finite for some, then done.
Il. Each F, is infinite. Define S = (N, ; Fy.

1. Sis closed.

2. 2.a Define the sequence A = {ax} by choosing distinct points ax € Fj
for each k. Uses: F}; s are infinite.

2.b Since F is bounded, the sequence forms a bounded, infinite set.
2.c Therefore A has an accumulation pt a. Bolzano-Weierstrass!

2.d Letr > 0and set B= B’(a;r). Since a is an acc pt of A, then B
contains co many pts of A. As the F},’s are nested, B also must
contain co many pts of Fj. Whence a is an acc pt of Fj.

2.e Fy isclosed, so a € Fy.
2.f The F), are nested, so a € [, Fx; i-e., the intersection is nonempty.
O

V.
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Vector Calculus

3.

Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Sample Intersections

1];F1:[07%]U[§71]ZF0_(%’§);
F,=[0,4U[3, 3] U2, T]U[8,1]; &c. Hence

L37/2] {214: % +1

3n7 o 3n :| J(k,n)
LetC =, Fn- Whence CIT = C is nonempty and closed.

k=0

. Let H,, = [n,00). Then H, is a sequence of nested, closed sets.

But ), Hn = ?

Set J,, = (-5, »£1) Then J, is a sequence of bounded,
nested sets.
But(), Jn =7?

V.
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Functions of Two Variables

Disconnection

Connected and Separated Sets
Separated: Two sets A and B are separatediff ANB = () = AN B.

Connected: A set S is connected iff S is not the union of 2
nonempty, separated sets.

Arcwise conn: Any two points in S are conn by a path inside S.
Disconnected: A set is disconnected iff S is not connected.

Region: A region is a connected set that may contain boundary
points (may be neither open or closed).

Proposition
1. Disjoint sets are separated if neither contains acc pts of the other.
2. Arcwise connected sets are connected

3. A nonempty, open, connected set is arcwise connected.

o
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Interlude

< 0W

|lz| + |y| = 1 Va2 +y? =1 max(|zl,|y|) =

Proposition
The open sets are the same under each of the metrics above.

MAT 5620: 43



Vector Calculus Functions of Two Variables Multiple Integration Intro

Limits and Continuity

Definition (Limit)
e Let f:D — R, and let (a,b) € D' C R?. Then
li =L
o f(z,y)

iff [Ve > 0] [30 > 0] [V(z, y) € D], if ||(z,y) —(a,b)|| <3, then | f(z, y)

L)|<e.

e Let f:D —+ R,andleta € D' C R™. Then
lim f(Z) =
r—a
iff [Ve >0] [36>0] [VZ € D), if |7 — @] < J, then |f(Z) — L| < e.

e Let f:D — R,andleta € D' C R™. Then
lim (%) =
r—a
iff [ve >0] 36 >0, f(D N B'(a@;8)) C B(L;e).

to Lebesgue Measure
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Limiting Examples

Let f(z,y) = zsin(1/y) + ysin(1/z). Then

lim z,y) =0
(z,y)—>(0,0)f( y)

Proof. Let §(¢) = ¢/2. And

|f(z,y)] <[] + [yl

Let g(z,y) =arctan(y/x). Then
li ,y) D.N.E.
(z,y)lgl(op)g(w )
Proof. Observe that lim;—,0 g(¢,t) = 7/4 and
lims 0 g(—t,t) = —7/4.

.

MAT 5620: 45



Vector Calculus Functions of Two Variables Multiple Integration

Algebra of Limits

Theorem (The Algebra of Limits)

Let f,g:D — R andd € D'. Suppose limz_,z f(Z) = Ly and

limz_,z (f) = Lg. Then
1. lim f(7) £ g(7) = Ly + L,
T—ad

L

=1 aslongas Ly, #0
Lg

4. lim [f(Z)] = |Lg|
Tr—ra

5. if f(Z) (<) g(&) on some B'(a;r), then Ly < L,
<

Intro to Lebesgue Measure
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Functions of Two Variables

Continuity

Definition (Continuity)
Let f:D — R, and (a,b) € D C R2. Then f is continuous at (a, b) iff
o [Ve>0] [30>0] [V(z,y) €D, if ||(z,y)—(a,b)|| <4, then
|f(z,y) — f(a, b)) <e.

Let /:D — R,and letd € D C R™. Then f is continuous at a iff
o [Ve>0] [36>0] [VZ € D], if || — d|| < 4, then |f(Z) — f(d)| < e.

o Ve>0] [36>0] f(D N B(@3)) C B(f(@);c).

e [VO C R, open set] f~1(0O) C R™ is an open set.

Proposition

[ is continuous at a iff [V{a,}| ifd, — d, then f(a@,) — f(a)
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Algebra of Continuity

Theorem (The Algebra of Continuity)
Let f,g: D — R be continuous ata € D. Then
1. f £ g is continuous at a
2. f-gis continuous ata
3. f/g is continuous at @ as long as g(a@) # 0

4. |f| is continuous at a

Proof.
2. (D C R?) Letd,, — a. Since (fg)(dn) = f(@n) g(dn), and f & g are

continuous at @, we have f(a,) g(a@») — f(a@) g(a@) = (fg)(@). Thus
(f9)(@n) — (fg)(a) for any sequence a,, — a; hence, fg is

continuous at a. O

(Note: Thm 10.2.9 has problems: g & f can’'t be composed as range(f) C R, but
dom(g) C R2. So range(f) Z dom(g). MAT 5620: 48



Functions of Two Variables

Continuously Reverted

Proposition
f:R™ — R is continuous iff
e the preimage of any open set (inR') is open (in R™).
e the preimage of any closed set (in R!) is closed (in R™).

Proof.

(=) Assume f is cont and S is open in R!.
Letae f~1(9);i.e. f(@) € S. For some >0, then B(f(a);r)CS
Whence thereisa § > 0, s.t. f(B(a;d)) C B(f(a);r) C S.
Hence B(a@;6) C f=1(S).

(<) Assume f~1(9) is open whenever S is open.
Letae f~1(S)and e > 0. Thence f~ ( (f(@;e)) is open.
Thus thereis a § > 0 s.t. B(@;6) C f~Y(B(f(a;¢)).
Apply f to have f(B(d;4)) < B(f(d;e)). -
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Let f(z,y) = 4 sin(a? + y?) e~ +¥/2)
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Functions of Two Variables

Uniform

Definition (Uniform Continuity)

A function f: D — R is uniformly continuous on D iff for any e > 0
thereisa d > 0 s.t. for all Z,,25 € D, if |1 — Z3| < 0, then

|f(Z1) — f(&2)] <e.

Theorem

If f is continuous on D, and D is closed & bounded (compact), then
1. f is bounded,
2. f attains extreme values (max and min),
3. f is uniformly continuous on D.

Proof (Homework).
1. Hint: Assume not, then look at f~'(a,,) where a,, — co.
2. Bolzano-Weierstrass in action.

3. Hint: Assume not. Create sequences %, ¥, that converge to @, but have
|f(&n) — f(¥n)| > . Cont gives a contradiction. 0
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Functions of Two Variables

Connecting to Rudolph Otto

Theorem

Let f: D — R be continuous and let S be a connected subset of D. Then
f(S) is connected. (A connected set inR is an interval.)

Proof.

Suppose f(S) = AU B with A & B nonempty, separated sets in R.
Define G = SN f~'(A)and H = SN f~'(B).

1. S:GuHsincef:S—t>f(S).
onto

2. letye A. (A#0.)IF e Sst. f(T) =¢. ThusT € G = G # 0.
Similarly, H # 0.

3. Letge GNH. lfge G, thenge GNH. Thenpe f~* (AN B);i.e.,
f(P) € AnB =0. Thus p'¢ G, whence g € G’ and f(p) € B. Since
ANB=0andpc B, 3 > 0s.t B(f(p);e) N A= 0. Since f is cont,
36 > 0s.t. f(B(p;0)) C B(f(p);e). Then B(p;d) N G is empty contrary

to 5 € G'. Hence G N H = . Similarly G N H = ().
4. Whereupon S is separated by G and H. oops —+— 0

o
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Functions of Two Variables

Fun with Functions

Problem (Functions)

Let f:R™ — R be a function. Let A and B be subsets of the domain
and range of f, respectively. Then

f(A)={y e R| f(a) =y for some a € A} C range(f)
fYB) = {z e R"| f(x) = b for some b € B} C dom(f)

Give an example justifying your answer.

1. TorF: AC f71(f(A)) 4. TorF:BC f(f~1(B))

2. TorF: A= f1(f(4)) 5. TorF:B=f(f~'(B))

3. TorF: ADf L(f(A)) or 6. TorF: BDf(f Y(B)) or
HfA)cA f(f(B)CB
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Rudolph Otto S von L

Definition (Lipschitz Condition)
If there is a constant L s.t.
|f(Z1) — f(@2)| < L[|71 — Z|

for all fZ,, 75 € D, then f satisfies a Lipschitz condition on D (also
called a “Lipschitz 1” condition).

Proposition
A function that is Lipschitz on D is uniformly continuous on D.

Proof.

Suppose f is Lipschitz with constant L.
Lete > 0. Choose 0 < § < ¢/L. For any vectors #; and Z in dom(f)
with ||z, — Z3|| < 6, we have

[f(#1) = f(Z2)] < L&) — Z5f| < Lo <e

O

MAT 5620: 54


http://www.gap-system.org/~history/Biographies/Lipschitz.html

Functions of Two Variables

Exercise

Problem (#14, pg 447)
Consider f:R? — R given by

o= [ 7

1. Is f continuous in polar coordinates?
Let0 = £ /4, resp., andr — 0. Thenlim,, ., 5 f(r,0) = 1/2, but
limg, . 4,5 f(r,0) = —1/2. Thus, f is not continuous at0 (polar).

2. Write f in rectangular coordinates.

1 sin(26) = cos(6) sin(6) Z 2l

x
VR S Py
3. Is f in rectangular coordinates continuous?
Let (z,y) — 0 as (t,t) and as (t, —t). Then f — +£1/2 ast — 0. Hence

f is not continuous at 0.
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Exercise’s Graph

Ty

= z,y) =4 ©*+y?
0 r=20 fey) 0 > +y°=0

1sin(20) r#0 ? +y* #0

o=
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Challenge Problem

Problem (Hmm.)
Define f:R? — R by
e*l/w2y
pla,y) =4 2 1y2 © 70
0 z=0

1. LetC be an arbitrary curve y = cz™/™ form,n € N with n.: odd.
Find

lim ¢(z, cz™/™)

z—0

2. Define the sequence d,, = (%, e—"z). Find

lim d;, and lim (@)

n—o0 n—oo

3. Is ¢ continuous at 0?

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure
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6—1/z2

y
= 7 x40
o(x,y) = { e=2/=> 442 7

0 rz=0

MAT 5620: 58



Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Partial Derivatives

Definition (Partial Derivatives)
Let D be an open set in R?, (a,b) € D, and f: D — R. Then

of . fla+h,b)— f(a,b)
a?(“’b) =i h '
af .. fla,b+h) — f(a,b)
@(a’b)_%% h

when the limits are finite.

2 2 .
Let f(z,y) = % and f(0) = 0. Then

o f(h0)—0
£2(0,0) = Jim == =0

d
0,0 = g 1@M 0

h—0 h =0

v
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flo,y)=4—32°—1y* and §L(2,1)& §L(2,1)
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Vector Calculus Functions of Two Variables Multiple Integration

More Partial Derivatives

Intro to Lebesgue Measure

1. h(z,y) = 2*/\/y. Then

he(z,y) = 2zy

hy(,y) = —5ay =/

—1/2

2. g(z,y) = —cos(z + y?). Then
9o (@, y) = sin(z + y?)
gy(@,y) = 2ysin(z + y?)

3. f(z,y) = 2%sin(y) — xze~*¥. Then

fo(z,y) = 22 sin(y) + (zy — 1)e= ™Y

fy(@,y) = 2® (cos(y) + e~*Y)

V.
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Deeper Partial Derivatives

Theorem (Clairaut’'s® Theorem (1743))

Let D C R? be open and f:D — R. If 221 and 22L are continuous on D,

oxzdy Oydx
8%f _ 9%f
then 520y = gz ON D.

Proof.
Let (a,b) € D. Set
g(h,k) = fla+h,b+k) — f(a,b+k) — f(a+ h,b) + f(a,b)
p(z,y) = fz+hy) — f(z,y) = A f
a(z,y) = fl@,y+k) — f(z,y) = Ayf
Then
g(h,k) =p(a,b+k) —p(a,b) = Ayp = AyA f
g(h,k) = qla+h,b) — q(a,b) = Asqg = Az Ay f

3 presented his first paper at age 13; only one of his 19 siblings to reach adulthood. " ****


http://www.gap-system.org/~history/Biographies/Clairaut.html

Functions of Two Variables

Deeper Partial Derivatives, |l

Proof (cont).

Apply the MVT to A,p and A,q above to have (for some 6, € (0,1))
g(h, k) =kpy(a,b+0:k) =k - [fy(a+ h,b+ 01k) — fy(a,b+ 01k)]
g(h,k) = hqg(a+02h,0)) = h - [fo(a+ 02k, b+ k) — fu(a+ 62h,b)]

Apply the MVT to A, f,, and A, f, above to have (for some 6, € (0, 1)).

g(h,k) = hk fye(a+ 03h, b+ 01k)
g(h, k) = kh fuy(a+ 62h,b+ 04k)

Whence
fyz(a + 6‘3h, b+ 6‘1/{) = fmy(a =+ 92h, b+ 94k)

Let h,k — 0. Since f,, and f,, are continuous, then

fym(aab) = fmy(avb) ]
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Deeper Samples

Intro to Lebesgue Measure

1. g(z,y) = —cos(z + y?). Then

go(@,y) =sin(z +1°) = gay(2,y) = 2y cos(z +y?)

gy(,y) =2ysin(z + y*) = gya(z,y) = 2y cos(z + y°)

2. flz,y) = M Then

2 + 32
_Jx x#0
fy(x’o)_{o z=0
)=y y#0

Whence f,,(0,0) = —1, but f,,(0,0) = +1.

(Maple)

v
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Operators and Exact Equations

Definition (Operators and Annihilators)
Let C'1(S) = {continuously differentiable fcns on S’}.
e An operatoron S is a fcn ®:CY(S) — C1(S).
e An annihilator is an operator combination that maps a fcn to 0.

v

Definition (Exact Differential Equations)

A differential equation M dz + N dy = 0 is exact iff there is a function
f(z,y)st. M =90f/0xand N = df/0y.

e D;= 3 - is an operator on C'(R").

o L = (D — 2)? annihilates the function f,(z) = aze?®.
e The DE (2zy + y?)dx + (22 + 2zy)dy = 0 is exact from
fz,y) = 2*y + 2y
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Partial Antiderivatives and Exact Equations

Solve the DE: 2zy dz + (22 — 1) dy = 0
Solution: Set M = 2zy and N = 22 — 1.
1. Since f, = M = 2zy, then f(z,y) = [2zydz = 2%y + ¢(y).

partial antiderivative
2. Now f, = N = (22 — 1), s0

5 [Pyt o] =o* = 1.

Since g [°y + ¢(y)] = 2° + £ 6(y), we have ¢/(y) = —1.
Whence ¢(y) = —y
Putting the pieces together, f(z,y) is given by
:c2y —Yy=c
where c is a constant of integration.

Try: (z4+y/(2® +y?)) dz + (y — z/(2* + y*)) dy = 0.

MAT 5620: 66



flz,y) = %(302 +42) + arctan(%)

MAT 5620: 67



Functions of Two Variables

Tangent Plane

Consider. . .
In R?
e Slope of the tangent line at z = a is f'(a)
e Tangentlineisy = f(a) + f'(a)(x — a)
In R3
e Tangent vector in the x direction at @ is T, = (1,0, f,(a@))

¢ Tangent vector in the y direction at @ is T, = (0, 1, f,(&))
e A plane containing @ and the tangent vectors is

(T, x T,) - (F @) = 0

nd g = (f(@), f4(@)))
)(x o) + f4(@)(y — o)

or (with @ = (xq, yo)

N
\
=
SE

+
N
—~

S
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Differentiation

Definition (Derivative)

Let f be defined on the open set D C R2. Then f is differentiable at Z, € D

iff there is a vector 77 s.t.
F(& + h) = f(Zo) + M- h + ||

Equivalently: iff there is a vector m s.t. for T'(Z) = f(&o) + m - (£ — Zo), then
ey T@ —T(@) _

T—To ||f— fo”

Definition (Gradient)
The gradient (vector) of f, written as V f of grad(f) is

Vf(Zo) = <%fo, %xo>

Note: V is a vector differential operator (generalizing D,): V = <

3 MAT 5620: 69
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Functions of Two Variables

Derivative

Nota Bene
fis differentiable* ata —>  5£(@) and 5 (@) both exist

a—f( )and ( @) both exist ==  f is differentiable at @

Theorem (The “Continuity of Partials Suffices” Thm)
If

1. f» and f, exist on B(d; <) for some e > 0, and

2. f, and f, are continuous at d,
then

1. f is differentiable at @, and

2. f(@) = f(@) + V(@) (T —a)+ (e1,62) - (T — @)

whereei,eo =+ 0asx — az,y — ay — 0, resp.

4 Careful: Gradientis V = (-2, -2.); Total derivative f’(Zo) is V f (o)
oz’ Oy
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Derivative

Proof (The “Continuity of Partials Suffices” Thm).

Letad = <.’E0,y0>.
NTS: Af(@) = VF(@)-(Ax, Ay) + &-(Az, Ay) with €0 as Az, Ay — 0.

1. Fix y. MVT = 321 € B(zo; 7) st. f(,y) — f(z0,y) = fo(z1,y)(z — 20)

2. f2€C(D) = fo(z1,y)=fz(x0,y0) + €= Where e, —0 as (z, y) — (zo, yo)
So f(z,y) — f(zo,y) = [fa(z0,y0) + €2] (x — 0) Where e, — 0.

Z,Y—T0,Y0

3. Fix z. MVT = 3y € B(yo;7) s.t. f(z,y) — f(@, y0) = fy(z,v1)(y — vo)

4. fy€C(D) = fy(z,y1)= fy(x0,%0) + &y Where e, —0 as (x,y) = (zo, yo)
So f(z,y) — f(z,y0) = [fy(z0,y0) + &y] (y — yo) Where e, —> 0.

Z,Y—T0,Y0

Whence
f(@,y) = f(wo,90) = [f(z,y) — f(@0,y)] + [f(z0,y) — f(Z0,y0)]

= [fz(20,Y0) + €] (x — x0) + [fy(z0,%0) + €4] (¥ — ¥o) o
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If f is differentiable at @, then f is continuous at @

|
| ‘I

Since f is differentiable at a,
F@+h) = £(@ = Vf(@) b+l

where &— 0 as i — 0. Thus
f@+h) - 1@)| < |vF@- k| + 21 IRl

< [IVF@IIRN + €1 1R] = (1Y @) + |€1) 7]
Whence %1_)1% f(@) = f(a).
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Functions of Two Variables

Algebra of Derivatives

Proposition (Algebra of Derivatives)
Let f and g be differentiable functions at a. Then

e f =+ g is differentiable at e V(fxg) = (Vf)£(Vg)
e f g is differentiable at @ e V(f-9)=(Vg+ f(Vyg)
e [+ g Is differentiable at @ o V(f+g) = w
as long as g(a@) # 0 when g(@) £0 9
Proof.

Homework. Pg 462, #14.

See: §10.2. Problem 4, pg461 (Maple time.)
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Functions of Two Variables

Directional Derivatives

Thinking Out Loud. . .

1. e f,isthe derivative in the (1, 0) direction
e f, is the derivative in the (0, 1) direction

h—

* (z0,y0 + k) — (0, y0) €QuiV 10 (2o, yo) + k{0, 1) — (w0, yo)

2. ° (:L'o + h yo) S ($0,y0) equiv to <:L'0,y0> + h< 0> —()) <$0,y0>

3. With an arbitrary direction @ (unit vector): Z+ ha h—g Zo
—

Definition (Directional Derivative)

Let f be defined on an open set D and @ € D. Then the directional derivative
of f in the direction of i, a unit vector, is given, if the limit is finite, by
fl@a+ hi) — f(a)
Daf(@) = lim 3

or

ou h—0 h
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Functions of Two Variables

Directional Derivative’s Properties

Theorem
If f is differentiable at @, then Dz f (@) exists for any direction . And
Daf(a)=Vf(a)-a

Proof.
Simple computation from: f(@ + hi) = f(a@) + V f(@) - (h@) + ¢||h| O

Corollary (“Method of Steepest Ascent/Descent”)

Let f be differentiable at a. Then
1. The max rate of change of f atd is |V f(@)|| in the direction of V f ().
2. The min rate of change of f atd is —||V f(a)|| in the direction of —V f(a).

Proof.
Simple computation from: Dy f(d@) = V f(a) - © = ||V f(a)]| ||| cos(P) O

Visit . MAT 5620: 75
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Gradient field & contour plot

f(z,y) 2y

T8 y2

f is not continuous at 0, but has directional derivatives in all directions at 0 !
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Functions of Two Variables

The Chain Rule

Theorem (The Chain Rule)
Ifz(t) and y(t) are differentiable at ty, and f is differentiable at
a = (z(t0), y(to)), then f composed with x and y is differentiable at t,
with
, 8f dx 8f dy

Proof.
Let z = f(z,y) and At = t; — to. Then Az = x(t1) — x(to) and
Ay = y(t1) — y(to). Since f is differentiable, we have
Az = f(z+ Az, y + Ay) — f(z,y) = faDz + fyAy + 1Az +e2Ay
So

Az Az Ay
At f’“’i f” At +€1E+E2At

Since At - 0 = Az, Ay — 0, then g1,e5 — 0 with At. O

v
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Functions of Two Variables

The Chain Rule Extended

Corollary (MCR Corollary)
Ifx(t,s) and y(t, s) are differentiable at (to, so), and z = f(x,y) is
differentiable at @ = (x(to, s0), y(to, s0)), then f composed with = and
y is differentiable at (to, so) with
dziaf oz Of 0y and dziﬁf oz  Of 9y
dt ~ 9z ot 8y ot ds Oz Os 8y ds
Two Views
8i 871’, of af
{dz dz} _ {al ai} ot  Os % N
dt ds| [0z 9y |9y dy o) b(6.9)
ot Os [),/ \‘35 g’j/
= Vi(a,y)- 20U
ot s) y_u. oo
= Vf(@,9) - T (t,5) o xii L1

'
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Functions of Two Variables

The Mean Value Theorem

Theorem (MVT for Two)

Suppose f is differentiable on the open D containing the segment
L(p,q). Then thereisacon L s.t.

f@) = 1(@)=Vf@E)-(7-7q)

Proof.
1. Set (wo,y0) = ¢and (h, k) =p'— 7

2. Set g(t) = f(zo + ht,yo + kt) for t€[0,1] (g parametrizes f on L)

3. Then g(1) — ¢g(0) = ¢’(6)(1 — 0) for some 6 € (0,1); i.e.
f@) = 1) =4g'(0)
4. The MCR implies
9t =fo G+ Ly H = for ) (5 &)

O

'
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Functions of Two Variables

Taylor's Theorem

Theorem (MV Taylor’s Theorem)

Suppose | has partial (n + 1)st derivatives (of all ‘mixtures’) existing
on B(d;r). Then for ¥ = @+ (h, k) in B(a@;r),

@+ () =1@ + (g + k) 5@
+ % <haa + kaay)z (@) +
aF % <haa$c I kaay)nf((f) + R,
where _
R.= i 5 (h;; 4 k§y> @+ 6(h, k)

for some 6 € (0,1).
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Taylor’s Theorem Eg

Find the Taylor polynomial of order 2 at @ = (1, 1) and remainder for
flx,y) = 2%y and 7 = (1,1) + (h, k).

1. f(@) = f(1,1) + [fz(1,1) - h + f,(1,1) - K]
+ 1 [foa(1,1) - B2 4+ 2f5y (1,1) - Bk + fyy(1,1) - k2]
+ 37 [fozz(1 + 0h, 1+ 0k) - h® + 3foey (1 + 6k, 1 4 0k) - h?k

+ 3fayy(L+ 0k, 1+ 0k) - hk? + fyyy (1 + 0h, 1 + 0k) - k2]
where 0 € (0,1)

2. f(A+h,14+k) =1+ [2h+k] + 3 [2h% + 4hk + Ok?] + R,
and Ry = £ [0h® + 6h%k + Ohk? + 0k3] = h?k with 6 € (0, 1)
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Multiple Integration

Multiple Integration

Definition (The Double Sums)

Suppose f is bounded on R = [a, b] X [c,d]. Let P = P, x P, be a partition of
R givenby P, = {a = o, ...,zn, = b} and P> = {¢ = yo, ..., ym = d} with
Ri]' = [$i71, yjfl] X [:Ei,yj]. Then the area of Rij is Aij = Aux; - ij
e Set ||P|| = max{Ax;, Ay;}.
e Define .
Mi;(f) = sup f(z,y) and mi;(f) = inf f(z,y)
ij ij

e Then define

U(P,f) = ZZMW AzAy; =) Mij A
irg
sz” A.CL‘ZAyJ = Zmiin]‘
irj
ZZ]‘ ci,dj) Azidy; = Y flci,dj)Aij
ij

where (¢;, d;) € Ry |s arb|trary
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Multiple Integration

A Useful Lemma

Lemma

Let f be bounded on the rectangle R with partition P. Set
m =infg f(xz,y) and M =supy f(x,y).

1. Then
m(b—a)(d—c) < L(P, f) < S(P, f) SU(P, f) < M(b—a)(d—c)

2. IfQ partitions R and P C Q, then
L(P, f) < L(Q,f) and U(Q,f)<U(Pf)

3. For any partitions P and Q of R, L(P,f) <U(Q, f).

4. sup L(P, f) < inf U(P, f)
P P

5. Theareaof Ris A=}, Ajj=(b—a)(d—c)

4
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Multiple Integration

The Integral

Definition (Double Integral)

Let f be bounded on the rectangle R. Then f is Riemann integrable on R iff
the upper double integral and the lower double integral, resp.,

HR fdA=infU(P,f) and ﬂR f dA = sup L(P, )

both exist and are equal. We write ij f dA for the common value.

Theorem
A bounded function f on the rectangle R is Riemann integrable iff
1. forany e > 0 there is a partition P of R s.t.
UP, f)— L(P, f) <e.

2. there is a seq of partitions { P,,} s.t.
lim U(Py,, f)=1= lim L(Py,f).
n— o0

n—00
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A Sample

Find || fdA when f(z,y) = % sin(z + ) and R = [0, T2
3 2
R

1. Use auniform grid: z; =L 2, y; =12 & (c;, d;) = (zi,y;) fori,j = 0.n
2. A generic Riemann sum becomes

SPuH= 3 fGEE5)GE-F3) GE-59)

3. Since sin(z + y) = sin(z) cos(y) + cos(x) sin(y), we have

S(Pn, f) = 8”722 Z [sin(£Z) cos(Z%) +cos(LZ)sin(LZ)]

i,j€[1,n]
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Vector Calculus Functions of Two Variables Multiple Integration

A Sample (cont)

4. Distribute the sums

(P00 ) = [Sosi35) S eon(5) + 3o eon(i5) 3o 9)|
i=1 Jj=1 i=1 j=1
=287 ) cos(+3) ) sin(£3)
i=1 j=1
e CHI HES wEH]
i=1 j=1
n . /2
5. lim =% T(L%) :/ T(z) dz, SO
/2 /2
lim S(P,, f) = / cos(z) dzx / sin(z)dz =1
6. Whence f isin(z+y)dA=1

[0,7/2]x[0,7/2]

Intro to Lebesgue Measure

v
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Multiple Integration

Continuous Functions

Theorem (Continuous Functions Are Integrable)
If f Is continuous on R = [a, b] X [c,d], then f is integrable on R.

Proof.
Lete > 0. Set A = area(R).

1. Since f is cont on R, then f is unif cont on R. Hence there is a
d > 0 s.t. whenever z7, 25 € R with |27 — 23| < ¢, then

|f(@1) — f(@2)] <e.
2. Choose a partition P s.t. |P|| < .
3. Then U(P, f) — L(P7 f) = Z MUAILij — Zm”A:clij |.e.,
4.J 0.J
UP, f) - L(P, f) = > (M;; —mij)AAy; <> eAAy; = Ae

i,j ,J

|:]/

MAT 5620: 87



Multiple Integration
Bilinearity

Theorem (Bilinearity of Integration)

1. Let fi; and f> be integrable on R, and ¢, and co be constants.

Then
jjclfl teafodA=c fffl dA =+ ¢y jjfsz
R R R

2. Let f be bounded on R = Ry + Rs.

2.1 Then f is integrable on R iff f is integrable on R, and Rx.
2.2 If f is integrable on R, then

gfdA:RﬂfdAJrgfdA

Proposition
Let f be integrable on R with m = ming f and M = maxg f. Then
m - area(R) < jj fdA < M - area(R)
R
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Multiple Integration

lteration
Thinking Out Loud. ..
1. Fix . Suppose f(z*,y) is an integrable function of y. Define
g(x) = f(z,y)dy
[e,d]

Then integrate g to get
/ { 1(@,y) dy} da
[a,b] |/ [e,d]

2. Fix y*. Suppose f(z,y") is an integrable function of z. Define

h(y) = fz,y) dx
[a,b]

Then integrate h to get
/ [ f(@,y) dw] dy
le,d] |/ [a,b]

How do these integrals relate to ([, f dA?
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lteration and Guido Fubini

Theorem (Fubini (1910))

Let f be integrable on a rectangle R. If for each x, the function h(y) = f(z,y)
is integrable overy € [c,d), then g(x) = [ f(x,y) dy is integrable for

z € [a,b], and br ad
gfdAz/a [/ f(x,y)dy] d

Corollary

Let f be integrable on a rectangle R. If
1. h(y) = f(z,y) is integrable overy € [c,d], and
2. k(z) = f(z,y) is integrable over z € [a, b],

then gfdA:/ab [/Cdf(x’y)dy} dm:/cd be(:v,y)dx] dy
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Multiple Integration

Proving Fubini’s Theorem

Proof (sketch).

Lete > 0.

1.
2.
3.

6.

Find a partition P of [a,b] X [c,d] where U(P, f) — L(P, f) < ¢
‘Slice’ this partition into Py (z) x Pa(y).
Use U(P1,g) — L(P1,g) < U(P, f) — L(P, f) to show

g(z) = f(z,y)dy is integrable over [a, b].
[c,d]

Show L(P, ) < / gdx < U(P, f)
[a,b]

Conclude /[ ) g(z)dz = ff f(z,y)dA
a, R

Use symmetry to have h(y) dy = ff f(z,y)dA
[c,d] R

Observe the doneness of the proof.

O
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Fubini Examples

Let N(z,y) = e~@**¥") and R = R2.
1. Change to polar coordinates.

ij(m yyda= ([ N(r,0)dA

[0,00] X [0,27]

2. Apply Fubini’s thm two ways:

2T e} 2T
21HN7~0dA / [/ Trdr]dﬁz/ ldo=m
0

22 ffereans [ o[ ragus [ [

[ee] oo

3. Whence /

— o0 —oo

e dz = v/w. Whereupon / \/% e 2% dr = 1.

2
dx
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Vector Calculus

Functions of Two Variables

Fubini Examples Il

Let f(z,y) = ;yonR [0,

1
i /
0

1
s. [
0

(22 +y?)?

/0 f(z,y)d ]dy
2 [[f
:/01|f<x,y>|dy} o= s

N

/ F(z,y) dy}dw=+

So jf f(z,y) dA does not exist
R

1] x

Multiple Integration

[0, 1].

Intro to Lebesgue Measure

MAT 5620: 93



Multiple Integration

The Leibniz Rule

Theorem (Leibniz Rule)
Suppose | has continuous partials on R = [a,b] X [c,d]. Set
d

= / / f(z,y)dy. Then g is differentiable on (a,b) and

d 49
o) = [ Geiw)da

Proof.
1. f has cont partials = f is cont and differentiable on int(R)
2. Then f is integ., so for every fixed z*, f(z*,y) is integ. on [c, d]
3. Choose = 7é z*, then 3z between x and x* s.t.

9l@) - gtz”) /fxy 7yd_/fxx0’
r—x

4. Take limits as z — z* to finish O
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Functions of Two Variables Multiple Integration

Camille Jordan’s Content

Vector Calculus

Definition (Jordan Content Zero)
A set S has Jordan content zero iff for each € > 0 there is a finite
collection R of rectangles R;; s.t.

e SCU; Ry

e area(R) =), area(R;;) < e

ij

Abounded set D is Jordan measurable iff 9D has Jordan content zero. |

Intro to Lebesgue Measure

e log spiral on [9.5297~1,9.5297] e unit disk
o Hilbert’s plane filling curve, space filling curve

Proposition
e Rectifiable curves have Jordan content zero.
e The union of sets of content zero has content zero.

v
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Multiple Integration

Jordan’s Extension

Theorem

If f is continuous on R = [a, b] X [c,d] except on a set of Jordan content zero,
then f is integrable on R.

Proof.

1. Since R is compact and f is cont, 3M > 0 s.t. | f(z,y)| < M on R.

2. For each R;; we see M;; —m;; < 2M.

3. Let S be the set of discontinuities of f. So S has content zero.

4. Lete > 0. Find P s.t. for the rect’s covering S, the Z area(R;j) < e

5. Divide the P into Ps and Pg where Ps contains the rectangles covering
S. Then U(P) — L(P) = [U(Ps) + U(Ps)] — [L(Ps) + L(Pg)].

6. Combine with 4: U(Ps) — L(Ps) < > (Mi; — ms;)AAs; < 2Me

7. f is unif cont on Ps so refine P to obtain M;; — m;; < eon P’

Then > (Mi; —mij)AAy <eY AAi; <eA
R;j€EP’ O
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Multiple Integration

Bounded, Jordan-Measurable Regions

Proposition (Integral on a B’nded, Jordan-Mble Set)

Let D be a bounded, Jordan-measurable region in R? and let f be
continuous on D. Define Xp(x) =1 forxz € D and 0 for x ¢ D.
Suppose the rectangle R O D.

HfdA 2 ﬂfdeA

o lfD is the region [a,b] x [a(x) )] where o < j3, then
f fdA 2 / / f(z,y) dy da
e If D is the region [a(y), B(y [c,d] where « < 3, then

ﬁ(y)
deA / / (z,y)dx dy
a(y)
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/ab/wa(x,y)dyda: /ab/ayfm,y)dwdy
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Multiple Integration

Line Integrals

Definition (Line Integral)

If fis continuous on a region D containing a smooth curve C, then
the line integral of f along C'is

fds = lim Zf (€, d;) As;

n—oo

Proposition
If C' has a smooth parametrization (x(t),y(t)) fort € [a,b], then

b
/ fds = / F@(),y(8) ' () dt
C

— [ sttt VOO
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Line Integrals Are Linear

Proposition (Algebraic Properties)

1./_Cfds:—/cfds

2. /fds:Z/ fds where C =, C;
c i=17Ci

/Cfds
Bxamples

1. [ xydx + (2% 4 y?)dy with C the unit circle in the 1st quadrant

3.

< ML where L = length(C) & M > max |f(z,y)]|.

2. [, xds with C the unit circle in the 1st quadrant

8. [gaydz + (2* + y*)dy with S being the unit square having the
vertex set [(1,0), (1, 1), (0,1), (0,0)]

4
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Green’s Theorem

Theorem (Green’s Theorem?®)

Let D be a simple region in R? with a positively-oriented, closed
boundary 0D. If F(z,y) = (M(z,y), N(x,y)) is a continuously
differentiable vector field on an open region containing D, then

Mdx + Ndy = jf(Nw — M,)dx dy
oD =

Theorem (Differential Forms Version)

For D as above and a differentiable (n — 1)-form w, / w= / dw
oD D

Corollary (Area of a Region)

2

For f and D as above, Area(D) = % j{ rdy —ydx.
oD

5There are a number of equivalent forms of Green’s Theorem. AT seE0:on


http://www.gap-system.org/~history/Biographies/Green.html
http://www.owlnet.rice.edu/~fjones/chap12.pdf
http://mathworld.wolfram.com/Differentialk-Form.html

Vector Calculus unctions of Two Variables Multiple Integration ntro to Lebesgue Measure

A Planimeter

MAT 5620: 102
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Vector Calculus Functions of Two Variables Multiple Integration Intro

Proving Green’s Theorem

Proof.
I.D={(z,y):a <z <band gi(z) <y < g2(x)}. By linearity, NTS:

%Md:c—fij and iDNdy:gNz
1. NowﬂM _/ / M, dy dz.

2. The FToC gives HM —/ [M(z, g2) — M(x, g1)]dx

3. Decompose 0D |nto D1 ={z,91(x)}, D2 = {x =b,91(b) <y < g2(b) },

Ds = {z,92(z)}, and Ds = {x = a,g2(a) >y > g1(a)}
4. On Dy and Dy, dz = 0,80 §,, = §,, + ¢,

5. Then de—/ M(t, gi(t dt+/ M(t, g2(t)) dt

/M (t, g1(t))— M(t, ga(t HM Ahal b Mdo = —gMy.

Il. Analogously, 7{ Ndy = N.
» {J

to Lebesgue Measure

O
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Forms of Green’s Theorem

Vector Calculus

Theorem
“Under suitable conditions,”
1. Mdx+ N dy = % F-Tds Circulation Thm
oD oD
2. Mdz—Ndy= ¢ F-Nds Flux Thm
oD

oD

8. fJ(Mw + Ny)dA = jj div(F)dA Divergence Thm
D D

4. j f (N, — M,)dA = H curl(F) dA Curl Thm
D D

—

divi) =V-v and curl(v) =V x v
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Introduction to Lebesgue Measure

Prelude

There were two problems with calculus:
there are functions where

« f@) # [f(@)da

0% 5 |60 P
3

In his 1902 dissertation, “Intégrale, long-
ueur, aire,” Lebesgue wrote, “lt thus
seems to be natural to search for a defi-
nition of the integral which makes integra-
tion the inverse operation of differentiation
in as large a range as possible.”

Euler Weierstrass
Henri Lebesgue's Mathematical Genealogy
Leibniz D Bernoulli Cauchy Stieltjes (partial)
Newton Simpson Fourier 'e;mann Lebesgue

1650 1675 1700 1725 1750 1775 1800 1825 1850 1875 1900 1925 1950
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Intro to Lebesgue Measure

What's in a Measure

Goals
THE BEST measure would be a real-valued set function i that satisfies
1. u(I) = length(I) where I is an interval
2. uis translation invariant. y(x + E) = u(E) for any € R
3. if {E,} is pairwise disjoint, then p(J,, Ev) = >, w(En)
4. dom(p) = P(R) (the power set of R)

THE BAD NEWS:

{ continuum hypothesis } = 1, 3, and 4 are incompatible
+ axiom choice

THE PLAN:
e Give up on 4. (cf. )
e 1. and 2. are nonnegotiable

e Weaken 3., then reclaim it
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Intro to Lebesgue Measure

Sigma Algebras

Definition
Sigma Algebra of Sets

Algebra: A collection of sets A is an algebra iff A is closed under
unions and complements.

o-Algebra: An algebra of sets A is a o-algebra iff A is closed under
countable unions.

Proposition

Let A be a nonempty algebra of sets of reals. Then
e )andR € A.
o A js closed under intersection.

Let A be a nonempty o-algebra of sets of reals. Then
e A is closed under countable intersections.
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Sigma Samples

1. A={0,R}

2. F ={F c R: Fisfinite or F° is finite}
2.1 Fis an algebra, the co-finite algebra
2.2 Fis not a g-algebra
Foreachr € Q, the set {r} € 7. ButU,o{r} =Q ¢ F

3. Let A ={0,[-1,1], (—00,—1) U (1,0),R}. Is A an algebra?
4. Any intersection of o-algebras is a o-algebra

5. Let B(R) be the smallest o-algebra containing all the open sets,
the Borel o-algebra.
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Let £ C R. Define the Lebesgue Outer Measure u* of E to be
“(E) = inf L),
w(B) = i ;f( )

the infimum of the sums of the lengths of open interval covers of E.

|

If A C B, then u*(A) < u*(B).

If I is an interval, then p*(I) = £(I).
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Intro to Lebesgue Measure

Outer Measure of an Interval

Proof.
. I'is closed and bounded (compact). Then I = [a, b].

1.

Forany e >0, [a,b] C (a —e,b+¢). Sopu"(I) <b—a+ 2. Since e is
arbitrary, p*(I) < b — a.

. Let {I,.} cover [a, b] with open intervals. There is a finite subcover for

[a, b]. Order the subcover so that consecutive intervals overlap. Then

Zﬁ[k (b1 —a1) + (ba — az) +--- + (bv —an)

Rearrange
Zé(lk) =by —(an —byn-1) — (aNn—1 —bn—2) — - — (a2 —b1) — a1

>by —a1 >b—a

Whence p*(I) = b — a.
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Intro to Lebesgue Measure

Outer Measure of an Interval, Il

Proof (cont).
IIl. Let I be any bounded interval and € > 0.
1. There is a closed interval J C I so that ¢(I) —e < £(J). Then
o) —e < UJ) = w'(J) < ™ (D) < ' (D) = () = £(I)
Ill. Suppose I is infinite.
1. Then for each n, there is a closed interval J C I s.t. 4(J) =n

2. Thence p*(I) > n for all n.
Aha! p*(I) =

Proposition
p*(@Q) =0

Proof.
Order Q as {r1,r2,...}. {In = (rn — /2", rn +€/2™)} covers Q O
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Intro to Lebesgue Measure

Countable Subadditivity

Theorem (u* is Countably Subadditive)

Let{E,} be a countable set sequence inR. Then y.* (U En) <> (En)
Proof.

I If p*(Ey) = oo for any n, then done.
Il. Lete >0

1. For each n find a cover {I,, ; }nen such that > £(1n;) < p*(En) + 5=
JEN

2. Then {In ;}n, jen covers E =, En.

3. Whereupon

pE) S Y Mng) =) [Zf(fn,j)]

n,jEN neN | jeN

<Y [ (B + 2%] = 3 W (Ba)] 4 <

neN neN O

MAT 5620: 112



Intro to Lebesgue Measure

Open Holding & Lebesgue’s Measure

Corollary
Given E CR ande > 0, there is an open setO D FE s.t.
p(E) < p*(0) < p(E) +e

Definition (Caratheodory’s Condition)

A set F is Lebesgue measurable iff for every (test) set A,
p*(A) = w*(ANE) + p* (AN E°)

Let 9t be the collection of all Lebesgue measurable sets.

Corollary
Forany A and E,
p*(A4) = p* (AN E) U (AN E°)) < p*(ANE) + p*(AN E°)
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Ifu*(E) =0, then E € 9M; i.e., E is measurable.

Given the previous corollary, we need only show that
p (AN E) + p* (AN E°) < i (4)
1. Since ANE C E, then p*(ANE) < p*(E) = 0.

2. Since AN E° C A, then p*(AN E°) < pu*(A).
Whence p*(ANE) + p*(ANE°) <0+ p*(4) = p*(A). O

p(@Q=0= QeM
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Vector Calculus Functions of Two Variables Multiple Integration

Unions Work

Intro to Lebesgue Measure

Theorem

A finite union of measurable sets is measurable.

Proof.
Let F1 and E> € . Let A be a test set.
1. Use AN EY as a test set for > which is measurable. Thence
p (AN ET) = p" (AN ET) N E2) + p*((AN EY) N E3)
2. Note AN (E1UE2) =(ANE1)U (AN E;N Ef). Whereupon
w (AN (ELUER)) 4+ p (AN (ELU E3)°)

(AN (E1U Ez)) + p" (AN (BT N E3))

IA

7

[W(ANE1) 4+ p* (AN E2 N EY)] + p" (AN Ef N ES)
B (AN Er) + [0 (AN Ef N E2) 4+ p* (AN Ef N E3)]
W
=u

IA

“(ANEy) + p* (AN EY)
“(4)

O
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Intro to Lebesgue Measure

Countable Unions Work

Theorem
The countable union of measurable sets is measurable.

Proof.

Let £, e M and E = J,, E,. Choose a test set A.
We need to show p*(ANE) + pu*(AN E°) < u*(A).

1. Set F,, = J" Ex, and F = U™ Ex = E. Define G; = E;,
Gy =FEy—Eq, ..., Gk:Ek—Uk_lEj,andG:UGk. Then
i)GiNG; =0, (i #j) (ii)Fn:OGk (i F=G=F
2. Test F,, with A to obtain p*(A) = p*(ANF,) + p* (AN EY)
3. Test G,, with AN F;, to obtain

p(ANE,) = (ANF,)NG,) +u (AN E,)NGS)
=p(ANGy) +p (AN F,_1)
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Countable Unions Work, Il

Proof.
4. lterate u*(ANFE,) = p* (ANGn) + p* (AN F,—1) from 3 to have

pANF) =) w(ANGy)
k=1
5. Since F,, C F, then F°¢ C F, for all n, then
p(ANFy) > u" (AN F°)
6. Whence n
p(A) 2 (ANGy) + p* (AN F)
k=1

The summation is increasing & bounded, so convergent.

7. However - -
> W(ANGE) = p* (U(AﬂG,Q) = (ANF)
k=1 k=1

Aha! *(A) > p* (AN F) + p* (AN Fe)

O
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Intro to Lebesgue Measure

Everything Works

Corollary
The collection of Lebesgue measurable sets O is a o-algebra.

Corollary
The Borel sets are measurable. (There are

sets.) B(R) ;Cé o g P(R)

Definition (Lebesgue Measure)
Lebesgue measure p is p* restricted to M. So p: M — [0, o).

Definition (Almost Everywhere)
A property P holds almost everywhere (a.e.) iff u({z : =P(z)}) = 0.
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Intro to Lebesgue Measure

The Return of Additivity

Theorem
Let{E,} be a countable (finite or infinite) sequence of pairwise disjoint sets

in9M. Then oo 0o
u(U Ek) = u(Ex)
k=1 k=1
Proof.
I. n is finite.
1. Forn=1,v

2. (Uizy Bx) N En = En and (U, Bx) N E; = Ui Br
8. (Ui Br) = p([Uizy Bx] 0 Bn) + p([UiZ, Bi] 0 E7)
= w(En) + u(UpZ1 Br) = p(En) + 521 i(Ex) = Ypoy p(Er)
. n is infinite.
1. Ui Bk C UZO:1 E, = “( b1 Ek) = 22:1 H(Erk) < M( iy Ek)
2. Abnded & incr sum converges. Thus >-77, pu(Ex) < u(Ure, Ex)
3. Subadditivity finishes the proof.

O
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Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Adding an Example

Set B, = (251, 727 ) forn = 1..00.

Vector Calculus

1. The E, are pairwise disjoint.

2. (En) = UEn) = 387 — "5 = s

o _ oo . [eo) " . oo 11
3. 4 0 8) = £ uibn) = 5 b = 5 [~ ]

n=1

Whence ,u( () En> =1,

NOTA BENE: UE =(0,1)—{3,%,3,... }. Hence UE =(0,1) a.

n=1
v,
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If{E,} is a seq of nested, measurable sets with p(E1) < oo, then

u(ﬂ En> = lim u(En)

n=1

1. Set E = (| Ek. Set Fi, = E, — Ei41. The Fj, are pairwise disjoint.
k=1

2. Since U Fy, = El—E, then /J,(El—E) = E /J,(Fk) = E /J,(Ek = Ek+1).
lh=il lh=1l k=1
3. If AC B, then u(A — B) = u(A) — u(B). Apply to the formula above.

- u(Br) — w(E) = ij W(ER) — (Brsr) = p(B) — Jim pu(Ey)

N

Since u(En) is finite, we're done. O
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

The Cantor Set

Cantor Sets’
I. Constructing C
1. SetCp = [0, 1]

2. SetC1 =Co—(3,2)
3. SetCo =C1 — (35, %) — (32> 2%)
4. SetC3 =C — (35, %) — (35, 3%) — (33, 28) — (33, B)
5. LetC =NC;
II. Properties of C
1w(Co) =1, p(Cr) = 2/3, 4. C is nowhere dense
#(C2) = 4/9, “(C =8/21, 5. C'is compact
.80 u(Cn) = 3p(Cn1) = 5m . .
Whence 1(C) = 0. 6. C'is totally disconnected
2. Cis uncountable 7. (Vi) oC; C C
3. Cis perfect 8. (Vi) ¥ ¢ 0Ci,but 1 € C

v

7Cantor gave the set in a footnote to show “perfect” ¢ “everywhere dense”.
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LetE CR andlete > 0. TFAE:
1. E is measurable

2. ThereisanopensetO D E s.t. u*(O—F) <e
3. ThereisaclosedsetF C Es.t. y*(E—F)<e

Let S and T be measurable subsets of R. Then

p(SUT) +pu(SNT) = pu(S) + u(T)
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Intro to Lebesgue Measure

Functionally Measurable

Theorem (Measurability Conditions for Functions)
Let f:D — R, forsome D € M. TFAE
1. Foreachr € R, the set f~*((r,0)) is measurable.
2. Foreachr € R, the set f~*(|r,
3. Foreachr € R, the set f~*
4. Foreachr € R, the set f—!

r,00)) is measurable.

Py

(—o0,7)) is measurable.
(—o0,7]) is measurable.

Proof.

1= 2 {z|f(z) 2 r} =N {z|f(z) >r—1/n}

2=3 {z|f(x) <r}=D—A{z|f(x) 2 r}

3= 4 {z|f(z) <r} =N, {z|flx) <r+1/n}

4=1: {z|f(z)>r}=D—{z| f(z) <r} m
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Intro to Lebesgue Measure

The Measurably Functional

Corollary

If f satisfies any measurability condition, then {z | f(x) = r} is measurable
for each r.

Definition (Measurable Function)

If a function f: D — R, has measurable domain D and satisfies any of the
measurability conditions, then f is measurable.

Definition
Step function: ¢:[a,b] — R is a step function if there is a partition a = x¢
<z <---<xp, =bs.t ¢is constant on each interval I, = (zx—1, zx), then

¢(x) =D arXr, ()

Simple function: A function v with range {a1, as, . .., a, } Where each set
1~ (ar,) is measurable is a simple function.
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Step functions and simple functions are measurable I

Let f and g be measurable on a common domain D, and let c € R. Then

1. f+ec 3. f+yg 5 f-g
2 ¢ f 4 f?

are all measurable.

M
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Let{f.} be a sequence of measurable functions on a common domain D.
Then
1. sup{fi,..., fn} 3. sup fn 5. limsup f,
. n—oo n—oo
2. inf {fi,..., fu} 4. inf f. 6. liminf f,
n—oo n—o0
are all measurable.

1. Set f ={f1,..., fu}. Then {f(z) > r} = | J{fu(z) > r}.
k=1
3. Set F =sup,, fn. Then {F(z) > r} = | J{fu(z) > r}.
k=1
5. Set ® = limsup,, f». Then limsup f, = inf [sup fk]
n—00 nolk>n O
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Moo ]

If f is measurable and f = g a.e., then g is measurable.

A sequence {f.} converges to f almost everywhere, written as f, — f a.e.,

iff 1 ({o: ful@) 4 f(@)}) =0.

Let f:[a,b] — R. Then f is measurable iff there is a seq. of simple functions
{sn} converging to f a.e.
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(=) Wolog f > 0.
1. Define A, = {z |52 < f(z) < 2= } for k =1..(n- 2") and

n2"

Ao = [a,8] = | Ank

n2"
k-1
2. Set Y (z) = nX4y, , (x) + Z o - Xa, k()
k=1
3. Then
3.1 1 <4hp <

3.2 1f0 < f(x) < n,then |f — | <27
3.3 lim, ¢y = f a.e.

(«) ¢ O
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Intro to Lebesgue Measure

Integration

We began by looking at two examples of integration problems.

e The Riemann integral over [0, 1] of a function with infinitely many
discontinuities didn’t exist even though the points of discontinuity
formed a set of measure zero.

(The points of discontinuity formed a dense set in [0, 1].)

¢ The limit of a sequence of Riemann integrable functions did not
equal the integral of the limit function of the sequence.
(Each function had area '/», but the limit of the sequence was the
zero function.)

We will look at Riemann integration, then Riemann-Stieltjes
integration, and last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy, Gauge,
Perron, etc. See the list given in the “See also” section of /ntegrals on
Mathworld.
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o A partition P of [a, b] is a finite set of points such that
P:{a:zo<x1 << Tp-i <£En=b}.

e Set M; = sup f(z) on [z;—1,x;]. The upper sum of f on [a, b] w.r.t. P is
UP,f) = M Az
i=1

e The upper Riemann integral of f over [a,b] is
b
/ fz)dz = igf UP,f)

1. Define the lower sum L(P, f) and the lower integral [* f.
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Intro to Lebesgue Measure

Definitely a Riemann Integral

Definition
If f:f(x) dr = Ifff(m) dz, then f is Riemann integrable and is written as
fab f(z)dz and f € Ron [a,b].

Proposition

A function f is Riemann integrable on [a, b] if and only if for every e > 0 there
is a partition P of [a, b] such that
U(P, f) = L(P, f) <e.

Theorem
If f is continuous on [a, b], then f € R on [a, b].

Theorem

If f is bounded on [a, b]with only finitely many points of discontinuity, then
feRonla,b].
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Properties of Riemann Integrals

Proposition

Let f and g € R on [a,b] and ¢ € R. Then
o fci)cfdx:cfabfdx
o ["(f+g)de=["fde+ ['gdv
e frgeR

if f <g, thenfffdm < f;gdx

|J2 £da| < [71f1d

Define F(z) = [ f(t)dt. Then F is continuous and, if f is
continuous at o, then F'(xy) = f(xo)

IfF' = f ona,b], then [ f(x) dz = F(b) — F(a)
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Vector Calculus

Functions of Two Variables

Riemann Integrated Exercises

Exercises

2.
3.

1. If [°|f(z)|dx = 0, then f = 0.

Show why fo xo(z) dz does not exist.
Define
(k-1
) =3 (57 ¥o @) + 223 @)

3.1 How many discontinuities does S,, have?
3.2 Prove that S, (z ) =0a.e.

3.3 Calculate [ S.(z)dz.
3.4 Whatis S ?
3.5 Does [ Seo(x) dz exist?

(See an an/mated graph of Sy.)

Multiple Integration Intro to Lebesgue Measure
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Intro to Lebesgue Measure

Riemann-Stieltjes Integral

Definition
¢ Let a(z) be a monotonically increasing function on [a, b]. Set
Aa; = a(z;) — a(zi—1).
e Set M; = sup f(z) on [z;_1,x;]. The upper sum of f on [a, b]
w.rt. o« and P is

UP, f, a ZM - Aoy

o The upper Riemann-Stieltjes integral of f over [a,b] w.rt. a is
b

/ () da(z) = inf U(P, f,0)

Exercise
1. Define the lower sum L(P, f, «) and lower integral I bfda.
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Intro to Lebesgue Measure

Definitely a Riemann-Stieltjes Integral

Definition
If fbf da = f,’jf da, then f is Riemann-Stieltjes integrable and is written as
I fa z) and f € R(«a) on [a, b].

Proposition

A function f is Riemann-Stieltjes integrable w.r.t. « on [a, b] iff for every e > 0
there is a partition P of [a, b] such that

U(P,ﬂa)—L(P,f,a) <e€

Theorem
If f is continuous on [a, b], then f € R(a) on [a, b].

Theorem

If f is bounded on [a, b]with only finitely many points of discontinuity and « is
continuous at each of f's discontinuities, then f € R(«) on [a, b].
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Intro to Lebesgue Measure

Properties of Riemann-Stieltjes Integrals

Proposition
Let f and g € R(«) andin 5 on [a,b] and ¢ € R. Then
o f:cfdachjfda and fabfd(ca):cf;fda
o ["(f+g)da= [ fda+ ['gda and
Jo fdla+B8) = [) fda+ [} fdB
* fr9€R(e)
o iff <y, thenfffdagf:gda

J2 fda| < [ 1f]da

e Suppose that o' € R and f is bounded. Then f € R(«) iff

fo' € R and , ,
/ fda:/ f-ad dx
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If f Is continuous at ¢ € (a,b) and a(xz) =r fora <z < cand a(z) = s

forc < x < b, then

b
/ f da = £(c) (aet) — afe=))
= f(c) (s — 1)

Let o« = |z|, the greatest integer function. If f is continuous on [0, b],

then 1b]

/ CLEEDW
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Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Riemann-Stieltjes Integrated Exercises

Exercises

folxda:Q 4. [1 evd|z|
2. fo cos(z) dsin(z) 5. fgéz e*d|z|
3. [P rde— |x)) 6. [ emd|x]

7. Set H to be the Heaviside function; i.e.,

H(x):{o <0

1 otherwise

Show that, if f is continuous at 0, then

+oo
[ f(z) dH(z) = £(0).
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Intro to Lebesgue Measure

Lebesgue Integral

We start with simple functions.

Definition
A function has finite support if it vanishes outside a finite interval.

Definition
Let ¢ be a measurable simple function with finite support. If

o(z) = Z a;x 4, (x) is a representation of ¢, then
i=1

/é(m) dx = Zai - (Ay)

Definition

If E'is a measurable set, then / o= /(b - XE-
E
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Intro to Lebesgue Measure

Integral Linearity

Proposition
If  and ) are measurable simple functions with finite support and
a,b € R, then/(aqwrb@!; fa/qSer/w Further,

ifp <1 a.e., then /qb S/’(/}.

Proof (sketch).
M

l. Let ¢ = ZaZXA and ¢ = > Bixs,. Then show a¢ + by can be

K
written as a¢ + by = Z(“O"“i + b8k, )X E, for the properly chosen Ej..
Set Ay and By to be zero sets of ¢ and 1. (Take
{Er:k=0.K}={A;NBy:j=0.N,k=0.M})

[I. Use the definition to show [¢ — [¢ = [(¢p —¢) > [0 =0. O
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Intro to Lebesgue Measure

Steps to the Lebesgue Integral

Proposition
Let f be bounded on E € 9 with u(E) < oco. Then f is measurable iff

o
ot fo=su [ 0

for all simple functions ¢ and .

Proof.
I. Suppose f is bounded by M. Define

Ek:{m:EM<f(:r)§EM}, —n<k<n
n n

The Ej are measurable, disjoint, and have union E. Set

n(@) = T3 kxm (@), ba(0) = T3 (k=1 xm (@)

—n —n

O
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Intro to Lebesgue Measure

SLI (cont)

(proof cont).
Then ¢,,(z) < f(x) < ¢(z), and so

. inf/Ews/Ewn:% S k(B
k=—n

M n
e sup 2/ = — k—1)u(E
foz [on=" 3 G- utm
Thus 0 < inf [, ¢ —sup [, ¢ < 2 u(E). Since n is arbitrary, equality
holds.
Il. Suppose that inf [,, ¢ = sup [}, . Choose ¢,, and v, so that
¢n < f <ty and [, (¥, — ¢,) < =. The functions ¢* = inf ¢,, and
¢* = sup ¢,, are measurable and ¢* < f < ¢*. The set
A ={z: ¢*(z) < ¢*(x)} has measure 0. Thus ¢* = ¢)* almost
everywhere, so ¢* = f a.e. Hence f is measurable.

O
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Example Steps

f =l 1 4sinly
oyl L2 1< —Il—
© f 7
o =
Xy =177 Hik.n x)
/ ANEIES M
B9 =[5 X (k1K)
A N\ k=in I_
\[ /
= Ea =
\
/
42 J2n 1ls 8 o ols 1l 2if al
\
L N Ewin
] T\
/
= N —
AN /.
/_
/
-+
p.
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Intro to Lebesgue Measure

Defining the Lebesgue Integral

Definition
If fis a bounded measurable function on a measurable set E with

m(E) < oo, then
-
o=t [ v

for all simple functions ¢ > f.

Proposition

Let f be a bounded function defined on E = [a, b]. If f is Riemann
integrable on [a, b], then f is measurable on [a,b] and

/Ef=/:f(af)d:c;

the Riemann integral of f equals the Lebesgue integral of f.
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Intro to Lebesgue Measure

Properties of the Lebesgue Integral

Proposition
If f and g are measurable on E, a set of finite measure, then

-/E(aerﬁg):a/EfJfﬁ/Eg
iff:ga.e.,then/Ef:/Eg
iffgga.e.,then/EfS/Eg

L] [

ifa < f<b, thena-u(E)S/Ebe-u(E)

if AN B =0, then f:/f+/f
AUB A B
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Lebesgue Integral Examples

1 1
1. Let T(z) = { @ / _ / T(z) de.
0 other\lee [0,1] 0

1 z€Q 1
2. Letxe(@) = {0 otherwme} /[01] 7é/()X(@(ac)dm'

3. Define
(axgyg ] n
=3 (M X i) ®) * )
Then =

3.1 f, is a step function, hence integrable
3.2 fn( )=0a.e.

1
3
3373 fn:/fna:da:<f
47 Jio.1 0 @) 8

4

MAT 5620: 147



Intro to Lebesgue Measure

Extending the Integral Definition

Definition
Let f be a nonnegative measurable function defined on a measurable
set E. Define

f= sup/ h

E h<fJE
where h is a bounded measurable function with finite support.

Proposition
If f and g are nonnegative measurable functions, then

o/ch:c/Efforc>O
'/Ef+g=/Ef+/Eg

. /ffgga.e.,then/fé/g
E E
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Intro to Lebesgue Measure

General Lebesgue’s Integral

Definition

Set fT(z) = max{f(x),0} and f~ (z) = max{—f(z),0}. Then f = f+ — f~
and |f| = f* + f~. A measurable function f is integrable over E iff both f*

and f~ are integrable over E, and then/ f:/ f*—/ .
E E E

Proposition
Let f and g be integrable over E and let c € R. Then

1./ch=c/Ef
2-/Ef+g=/Ef+/Eg

&, iffgga.e.,then/fg/g
E E
4. if A, B are disjoint m’ble subsets of E, = / f+ / f
A B

AUB
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Intro to Lebesgue Measure

Convergence Theorems

Theorem (Bounded Convergence Theorem)

Let{f. : E — R} be a sequence of measurable functions converging to f
withm(E) < oco. If there is a uniform bound M for all f,, then

/ lim f, = lim / fn

Proof (sketch).
Lete > 0.
1. f» converges “almost uniformly;” i.e., 3A, N s.t. m(A) < —_ and, for

4M
n>N7£E€E—A - |fn(x)_f(x)|gm

L= o= fr-o|< Lim=ni= ([ + [ )15

3 [ lfa-il+ /A \ful + 1] <

€

m(E)+2M.ﬁ:e

E—-A

2m(E)

O
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Intro to Lebesgue Measure

Lebesgue’s Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)

Let{f. : E — R} be a sequence of measurable functions converging a.e. on
E withm(FE) < oo. If there is an integrable function g on E such that |f,| < g

then
/ lim f,, = lim/ I
E n n E

Lemma
Under the conditions of the DCT, set g, = sup {fn, fnt1,-.. } and
kE>n

hn = 10t {fn, fas1,...}. Then g, and h, are integrable and
lim g, = f=limh, a.e.

Proof of DCT (sketch).

e Both g,, and h,, are monotone and converging. Apply MCT.

® hn < fo<gn = [ghn < [pfa < [pon 0
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Intro to Lebesgue Measure

Increasing the Convergence

Theorem ( Lemma)

If{f»} is a sequence of measurable functions converging to f a.e. on E, then

/ lim f,, < lim inf/ fn
E " n E

Theorem (Monotone Convergence Theorem)

If{f.} is an increasing sequence of nonnegative measurable functions

converging to f, then
/hHl fn = hm/fn

Corollary ( Theorem (cf.))

If{fn} is a sequence of nonnegative measurable functions, then

/iﬁZi/}%
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Intro to Lebesgue Measure

Sidebar: Littlewood’s Three Principles

John Edensor Littlewood said,

The extent of knowledge required is nothing so great as
sometimes supposed. There are three principles, roughly
expressible in the following terms:
e every measurable set is nearly a finite union of intervals;
e every measurable function is nearly continuous;
e every convergent sequence of measurable functions is
nearly uniformly convergent.
Most of the results of analysis are fairly intuitive applications
of these ideas.

From Lectures on the Theory of Functions, Oxford, 1944, p. 26.
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Intro to Lebesgue Measure

Extensions of Convergence

The sequence f,, convergesto f ...

Definition (Convergence Almost Everywhere)
almost everywhere if m({z : fn(z) » f(z)}) = 0.

Definition (Convergence Almost Uniformly)

almost uniformly on E if, for any ¢ > 0, there is a set A C E with m(A) < € so
that f,, converges uniformly on £ — A.

Definition (Convergence in Measure)

in measure if, for any € > 0, lim m ({z : |fn(z) — f(z)| > €})=0.

Definition (Convergence in Mean (of order p > 1))

1/p
inmeanif lim ||f, — f|l, = lim {/ |fffn|”} =0
n—oo n— o0 E
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Intro to Lebesgue Measure

Integrated Exercises

Exercises

1. Prove: If f is integrable on E, then |f| is integrable on E.

BRI

3. True or False: If |f| is integrable over E, then f is integrable over
E.

4. Let f be integrable over E. For any € > 0, there is a simple
(resp. step) function ¢ (resp. 1) such that / |f—¢| <e
E

2. Prove: If f is integrable over E, then

5. Forn =k +2",0 <k < 2%, define fn, = Xjx2-v, (k+1)2-7]-
5.1 Show that f,, does not converge for any = € [0, 1].
5.2 Show that f,, does not converge a.e. on [0, 1].
5.3 Show that f,, does not converge almost uniformly on [0, 1].
5.4 Show that f,, — 0 in measure.
5.5 Show that f, — 0 in mean (of order 2).
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