## 1 Uniform

Definition 1 (Uniform Continuity). A function $f: D \rightarrow \mathbb{R}$ is uniformly continuous on $D$ iff for any $\varepsilon>0$ there is a $\delta>0$ s.t. for all $\vec{x}_{1}, \vec{x}_{2} \in D$, if $\left\|\vec{x}_{1}-\vec{x}_{2}\right\|<\delta$, then $\left|f\left(\vec{x}_{1}\right)-f\left(\vec{x}_{2}\right)\right|<\varepsilon$.

Theorem 1. If $f$ is continuous on $D$, and $D$ is closed \& bounded (compact), then

1. f is bounded,
2. $f$ attains extreme values (max and min),
3. $f$ is uniformly continuous on $D$.

Proof (Homework). (Keys)

1. Hint: Assume not, then look at $f^{-1}\left(a_{n}\right)$ where $a_{n} \rightarrow \infty$.
2. Bolzano-Weierstrass in action.
3. Hint: Assume not. Create sequences $\vec{x}_{n}, \vec{y}_{n}$ that converge to $\vec{a}$, but have $\left|f\left(\vec{x}_{n}\right)-f\left(\vec{y}_{n}\right)\right|>\varepsilon$. Cont gives a contradiction.

## 2 Fun with Functions

Problem 1 (Functions). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function. Let $A$ and $B$ be subsets of the domain and range of $f$, respectively. Then

$$
\begin{aligned}
f(A) & =\{y \in \mathbb{R} \mid f(a)=y \text { for some } a \in A\} \subseteq \operatorname{range}(f) \\
f^{-1}(B) & =\left\{x \in \mathbb{R}^{n} \mid f(x)=b \text { for some } b \in B\right\} \subseteq \operatorname{dom}(f)
\end{aligned}
$$

Give an example justifying your answer.

1. $\mathbf{T}$ or $\mathbf{F}: A \subseteq f^{-1}(f(A))$
2. $\mathbf{T}$ or $\mathbf{F}: A=f^{-1}(f(A))$
3. $\mathbf{T}$ or $\mathbf{F}: A \supseteq f^{-1}(f(A))$ or $f^{-1}(f(A)) \subseteq A$
4. $\mathbf{T}$ or $\mathbf{F}: B \subseteq f\left(f^{-1}(B)\right)$
5. $\mathbf{T}$ or $\mathbf{F}: B=f\left(f^{-1}(B)\right)$
6. T or $\mathbf{F}: B \supseteq f\left(f^{-1}(B)\right)$ or $f\left(f^{-1}(B)\right) \subseteq B$
