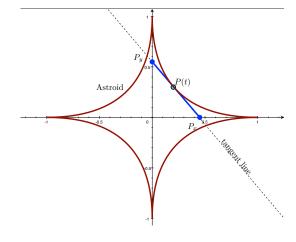
Work quickly and carefully, following directions closely. Answer all questions completely.

§I. PROBLEMS.

1. Let \mathcal{A} be the astroid given by $f(t) = [\cos^3(t), \sin^3(t)]$ for $t \in [0, 2\pi]$. Let P(t) be a point on \mathcal{A} . Let P_x and P_y be the x- and y-intercepts of the line tangent to \mathcal{A} at P(t). Show that the line segment $\overline{P_xP_y}$ has constant length; i.e., the length of the segment is independent of t.



2. Let $\vec{r}: \mathbb{R} \to \mathbb{R}^3$ be a vector-valued function that has 2 continuous derivatives for all t. Prove or disprove

$$\frac{d}{dt}[\vec{r}(t) \times \vec{r}'(t)] = \vec{r}(t) \times \vec{r}''(t).$$

- 3. Let $f(t)=\frac{2t^2}{1+t^2}$ and set $C_{6\pi}$ to be the curve given by $[f(t)\cos(2t),f(t)\sin(2t)]$ for $t\in[0,6\pi]$. Find the length of the curve C. Can you make a conjecture concerning the ratio $\frac{\operatorname{length}(C_{2n\pi})}{4n}$ as $n\to\infty$?
- 4. Prove or disprove: Let $A_1 = B(\langle 1, 0 \rangle, 1)$ and $A_{-1} = B(\langle -1, 0 \rangle, 1)$ be open balls in \mathbb{R}^2 . Then $E = A_1 \cup A_{-1}$ is not separated.
- 5. Problem 4, page 446. Add: (g) Show $f_x(0,0) = 0 = f_y(0,0)$ even though f is not continuous at f(0,0).
- 6. A harmonic function is one that satisfies Laplace's equation $\nabla^2 f(x,y) = 0$ where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.
 - (a) Prove that the functions

i.
$$f(x,y) = x^3 - 3xy^2$$

ii.
$$g(x,y) = 3x^2y - y^3$$

are harmonic.

(b) Find $\frac{d^2z}{dt^2}$ for z = f(x, y) when $x(t) = \ln(t)$ and $y(t) = e^t$ without expanding f in terms of t.