Vector Calculus

Vector Space Axioms

A set $\mathcal{V} = \{\vec{v}\}$ with addition + and scalar multiplication \cdot with scalars from a field F is a vector space over F when

- 1. $\langle \mathcal{V}, + \rangle$ is an Abelian group.
- 2. scalar multiplication distributes over vector addition
 - scalar addition distributes over scalar multiplication
 - multiplication of scalars 'associates' with scalar multiplication

Recall:

- The norm (magnitude) of a vector \vec{u} is $\|\vec{u}\| = \sqrt{\sum u_i^2}$
- The direction vector of \vec{u} is $(1/\|\vec{u}\|) \cdot \vec{u}$

Definition (Dot Product in \mathbb{R}^n over \mathbb{R}) $\vec{u} \cdot \vec{v} = \sum u_i \cdot v_i = \|\vec{u}\| \|\vec{v}\| \cos(\angle \overline{uv})$

Dot Product

Multiple Integration

Cross Product

Definition

• Let \vec{u} and $\vec{v} \in \mathbb{R}^3$; set e_1, e_2, e_3 to be std basis vectors. Then

	e_1	e_2	e_3
$\vec{u} \times \vec{v} =$	u_1	u_2	u_3
	v_1	v_2	v_3

• Let $\vec{u_1}$ to $\vec{u_{n-1}} \in \mathbb{R}^n$, $n \ge 3$; let $\{e_n\} = \{$ std basis vectors $\}$. Then

	$ e_1$	e_2	• • •	e_n
$(\rightarrow \rightarrow)$	$u_{1,1}$	$u_{1,2}$	•••	$u_{1,n}$
$\times (u_1, \dots, u_{n-1}) =$:	·	:
	$ u_{n-1,1} $	$u_{n-1,2}$		$u_{n-1,n}$

MAT 5620: 3

Parametric Equations

Definition (Parametrization)

Suppose $f: D \to \mathbb{R}, g: D \to \mathbb{R}$, and $h: D \to \mathbb{R}$. Then

 $\gamma(t) = (f(t), g(t), h(t))$

for $t \in D$ is a *curve (spacecurve)* in \mathbb{R}^3 . The fcns f, g, and h are *parametric equations* for γ , or a *parametrization of* γ .

Examples

1. The line segment *L* from \vec{u} to \vec{w} can be parametrized as

$$L(t) = \vec{u} + (\vec{w} - \vec{u}) \cdot t, \qquad t \in [0, 1]$$

2. Γ given by f:=t-> $\langle \cos(t), \sin(t) \star \cos(t), t \star (1-t) \rangle$ for $t \in [0, 3\pi]$. animate(spacecurve, [f(t), t=0..3*Pi*k,

thickness=2],k=0..1,axes=frame,color=black,frames=30)

MAT 5620: 5

 Vector Calculus
 Functions of Two Variables
 Multiple Integration
 Intro to Lebesgue Measure

Continuous Spacecurves

Definition

Let $\mathcal{I} = [a, b] \subseteq \mathbb{R}$. A curve γ is

- continuous (on I) if γ can be parametrized with components that are continuous on I.
- smooth (on I) if γ's parametric components are continuously differentiable on I, and f'² + g'² + h'² > 0 for all t ∈ (a, b).
- *piecewise smooth (on I)* if [a, b] can be partitioned into a finite number of subintervals on which γ is smooth.

Note: Smooth \equiv a particle moving parametrically along the curve doesn't change direction abruptly, stop mid-curve, or reverse.

Theorem

If $\gamma(t) = (f(t), g(t))$ is smooth on [a, b], then tangent slope at $P_0 = (x, y)$ is given by $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ when $\frac{dx}{dt} \neq 0$.

A Smooth Closed Curve

Multiple Integration

Planes in \mathbb{R}^3

Vector Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measure	
	Quadric Surfaces			
Standa	rd Forms of Quadric Su	rfaces		
	sphere:	$x^2 + y^2 + z^2 = r^2$		
	ellipsoid:	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$		
	elliptic paraboloid:	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - z = 0$		
	hyperbolic paraboloid:	$\frac{x^2}{a^2} - \frac{y^2}{b^2} + z = 0$	_	
	elliptic cone:	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - z^2 = 0$		
	hyperboloid of 1 sheet:	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = +1$		
	hyperboloid of 2 sheets:	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$		

Quadric Surfaces Reformed

Almost Standard Forms of Quadric Surfaces

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure Vector-Valued Functions

Notation

The standard basis vectors in \mathbb{R}^3 are

 $\langle 1, 0, 0 \rangle = e_1 = \mathbf{i}, \qquad \langle 0, 1, 0 \rangle = e_2 = \mathbf{j}, \qquad \langle 0, 0, 1 \rangle = e_3 = \mathbf{k}$

If $f, g, h: D \to \mathbb{R}$ are real functions, then $\vec{r}: D \to \mathbb{R}^3$ given by

$$\vec{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

is a vector-valued function with components f, g, and h.

Definition

Let $\vec{r}: D \to \mathbb{R}^3$ have components f, g, and h, and let t_0 be an accumulation point of D. Then

$$\lim_{t \to t_0} \vec{r}(t) = \vec{L} = L_f \mathbf{i} + L_g \mathbf{j} + L_h \mathbf{k}$$

iff $(\forall \epsilon > 0)$ $(\exists \delta > 0)$ s.t. $(\forall t \in D)$ if $0 < |t - t_0| < \delta$, then $||\vec{r}(t) - \vec{L}|| < \epsilon$.

 L_h

Vector-Valued Function Limits

Theorem (Limits Work)

$$\lim_{t \to t_0} \vec{r}(t) = L_f \mathbf{i} + L_g \mathbf{j} + L_h \mathbf{k}$$

$$\iff$$

$$\lim_{t \to t_0} f(t) = L_f \wedge \lim_{t \to t_0} g(t) = L_g \wedge \lim_{t \to t_0} h(t) =$$

Proof (key inequality).

$$|a| \underset{(\Leftarrow)}{\leq} \sqrt{a^2 + b^2 + c^2} = \left\| (a, b, c) \right\| \underset{(\Rightarrow)}{\leq} |a| + |b| + |c|$$

MAT 5620: 13

$$\begin{array}{c} \mbox{(2002) (20$$

Continuity of Vector-Valued Functions

Definition (Continuity)

A function $\vec{r}(t)$ is *continuous* at $t_0 \in D$ iff $(\forall \epsilon > 0)$ $(\exists \delta > 0)$ s.t. $(\forall t \in D)$ if $|t - t_0| < \delta$, then $||\vec{r}(t) - \vec{r}(t_0)|| < \epsilon$.

Proposition

1. A function $\vec{r}(t)$ is continuous at an accumulation point $t_0 \in D$ iff

$$\lim_{t \to t_0} \vec{r}(t) = \vec{r}(t_0)$$

- 2. A function $\vec{r}(t)$ is uniformly continuous on $E \subseteq D$ iff $(\forall \epsilon > 0)$ $(\exists \delta > 0)$ s.t. $(\forall t_1, t_2 \in E)$ if $|t_1 - t_2| < \delta$, then $||\vec{r}(t_1) - \vec{r}(t_2)|| < \epsilon$.
- 3. If a function $\vec{r}(t)$ is continuous on a closed and bounded set *E*, then \vec{r} is uniformly continuous on *E*.

MAT 5620: 15

(2000) We can be appropriate the series of the series of

Algebra of Vector-Valued Derivatives

Theorem (Algebra of Derivatives)

Suppose $\vec{u}, \vec{w}: D \to \mathbb{R}^n$ & $k: D \to \mathbb{R}$ are all differentiable, and $c \in \mathbb{R}$. Then

$$[\vec{u} \pm \vec{w}]' = [\vec{u}'] \pm [\vec{w}'] \tag{6}$$

$$c\,\vec{u}\,]' = c\,[\vec{u}\,'] \tag{7}$$

$$[k \vec{u}]' = [k'] \vec{u} + k [\vec{u}']$$
(8)

$$\left[\vec{u}\cdot\vec{w}\right]' = \left[\vec{u}\,'\right]\cdot\vec{w} + \vec{u}\cdot\left[\vec{w}\,'\right] \tag{9}$$

$$\left[\vec{u} \times \vec{w}\right]' = \left[\vec{u}'\right] \times \vec{w} + \vec{u} \times \left[\vec{w}'\right]$$
(10)

$$\|\vec{u}\|' = \frac{\vec{u} \cdot [\vec{u}\,']}{\|\vec{u}\|} \tag{11}$$

$$\left[\vec{u}\circ k\right]' = \left[\vec{u}\,'\circ k\right] \ast k'$$

MAT 5620: 17

MAT 5620: 18

(12)

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure **Derivative Props Properties** Suppose $\vec{r}(t)$ is a twice differentiable vector function. **1.** $\vec{V}(t) = \vec{r}'(t)$ is • the tangent vector of \vec{r} • the velocity vector of \vec{r} and $S(t) = \|\vec{r}'(t)\|$ gives the *speed* of $\vec{r}(t)$ **2.** $\vec{A}(t) = \vec{V}'(t) = \vec{r}''(t)$ is • the acceleration vector of \vec{r} Example Find the velocity & acceleration and the speed for the function 1. $\vec{r}(t) = \langle 2\cos(t), 3\sin(t), z_0 \rangle$. 2. $\vec{\rho}(t) = \langle \cos(t) \cdot (1 + \cos(t)), 2\sin(t) \cdot (1 + t), t \rangle$.¹

1spacecurve(f(t),t=0..6*Pi,numpoints=101,thickness=3,axes=normal)

Example 9.6.9

Example (9.6.9, pg 410)

Consider $\vec{u}, \vec{v}, \vec{w} : \mathbb{R} \to \mathbb{R}^2$ defined by

$$\vec{u} = \langle t, t^2 \rangle, \vec{v} = \langle t^3, t^6 \rangle, \text{ and } \vec{w} = \begin{cases} \langle t, t^2 \rangle & \text{if } t \leq 0 \\ \langle t^3, t^6 \rangle & \text{if } t > 0 \end{cases}$$

All 3 functions are continuous, all trace the parabola $y = x^2$, and all are $\vec{0}$ at t = 0.

- 1. \vec{u} is differentiable at t = 0 with tangent vector $\vec{u}'(0) = \langle 1, 0 \rangle$ and tangent line y = 0.
- 2. \vec{v} is differentiable at t = 0 with tangent vector $\vec{v}'(0) = \langle 0, 0 \rangle$, but has *no* tangent line $\vec{0}$.
- 3. \vec{w} is *not* differentiable at t = 0 and has no tangent line at $\vec{0}$.

ctor Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measu
	Cir	cles	
Proposi	tion		
$\frac{\textit{Let } \vec{r} \textit{ be a}}{\vec{r}(t) \cdot \vec{r}'(t)}$	a differentiable vector function \vec{r}' are or \vec{r}' are or	oction of t . Then $\ \vec{r}(t)\ $ thogonal.	is constant iff
Proof.			
$\ \vec{r}(t)\ $	$ \vec{t})\ $ is constant $\iff \vec{r}(t)$	$\cdot \vec{r}(t) = c \iff \vec{r}(t) \cdot \vec{r}(t)$	$\vec{r}'(t) = 0$
Definitio	n		
Unit tange	ent vector: $\vec{T}(t) = \vec{r}'(t)/$	$\ \vec{r}'(t)\ $	
Unit norm	nal vector: $\vec{N}(t) = \vec{T}'(t)/$	$\ \vec{T}'(t)\ $	
$ec{V} = ec{r}'$ ar $ec{A}_{ec{N}} = vec{T}$	nd $v = \ ec{V}\ .$ Then $ec{A} = ec{V}$	$\vec{r}' = v \vec{T}' + v' \vec{T}$. Since n orthogonal decomp	$\vec{T'} \perp \vec{T}$, then of \vec{A}

or Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Meas
	\mathbf{b}^{e} (Cræft	
Project			
Using	$ec{r}^{\prime\prime}=ec{A}=$	$= v \vec{T}' + v' \vec{T}$	(13)
	$\vec{A} =$	$= \vec{A}_{\vec{N}} + \vec{A}_{\vec{T}}$	(14)
1. Con	npute $ec{A}\cdotec{T}$?		
2. Wha	it vector is $(\vec{A}\cdot\vec{T})\vec{T}$?		
3. Con	npute $ec{A} - \left(ec{A} \cdot ec{T} ight)ec{T}$?		
4. App com	ly this idea to $ec{r}(t) = \langle \cos(ho r) angle$	$\langle t), \sin(t) \rangle$. What are A	l's orthognal
			MAT 5
en Calaulua	Eurotione of Two Veriables	Multiple Internation	listric to Listensius Mass

Int

Definition

$$\int_{a}^{b} \vec{r}(t) dt = \left[\int_{a}^{b} f(t) dt \right] \mathbf{i} + \left[\int_{a}^{b} g(t) dt \right] \mathbf{j} + \left[\int_{a}^{b} h(t) dt \right] \mathbf{k}$$

iff the integrals exist. I.e., $\int_a^b \langle f_i \rangle(t) dt = \left\langle \int_a^b f_i(t) dt \right\rangle$.

Theorem (FToC)

Suppose $\vec{r}(t)$ is integrable on [a, b] and $\vec{R}(t)$ is an antiderivative (or primitive) for \vec{r} . Then $\int_{a}^{b} \vec{r}(t) dt = \left. \vec{R}(t) \right|_{a}^{b} = \vec{R}(b) - \vec{R}(a)$

Theorem

Suppose $\vec{r}(t)$ is integrable on [a, b]. Then

$$\int_{a}^{b} \vec{r}(t) dt \bigg\| \leq \int_{a}^{b} \|\vec{r}(t)\| dt$$

Arclength

Definition (Arclength)

Let $\gamma(t) = \vec{r}(t)$ be a smooth curve on [a, b]. The length of γ on [a, b] is

 $L(\gamma) = \sup \{L_Q \mid Q \text{ partitions } [a, b]\}$

where $L_Q = \sum_k \left\| \gamma(t_k) - \gamma(t_{k-1}) \right\|$ for $t_k \in Q$.

Proposition

Let $\gamma(t) = \vec{r}(t)$ be a smooth curve on [a, b]. The length of γ on [a, b] is $L(\gamma) = \lim_{|Q| \to 0} L_Q$ where |Q| is the norm of the partition.

Theorem (Useful Arclength Theorem)

Let $\gamma(t) = \vec{r}(t)$ be a smooth curve on [a, b]. The length of γ on [a, b] is

$$L(\gamma) = \int_{a}^{b} \sqrt{\sum_{k} (f'_{k})^{2}} dt = \int_{a}^{b} \left\| \vec{r}'(t) \right\| dt$$

Rectified

Definition (Recifiable Curve)

A curve γ is *rectifiable* iff $L(\gamma)$ is finite.

Examples (Curves²)

I. Let
$$\gamma(t) = \langle \cos(\pi t), \sin(\pi t), \sqrt{3} \pi t \rangle$$
 on $[0, 1]$.
1. $L(\gamma) = \int_{0}^{1} \|\gamma'(t)\| dt$

2. =
$$\int_0^1 \left\| \pi \langle -\sin(\pi t), \cos(\pi t), \sqrt{3} \rangle \right\| dt = 2\pi$$

II. Let
$$\psi(t) = \langle \tan(t), 1 - \sin(t), \cos(t) \rangle$$
 on $[0, \pi/2]$.
1. $L(\psi) = \int_0^1 \|\psi'(t)\| dt$
2. $= \int_0^1 \|\langle \sec^2(t), -\cos(t), -\sin(t) \rangle\| dt = \infty$

MAT 5620: 25

 $\frac{3\pi}{2}$

² Maple worksheet

Vector Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measure	
	Interlude			
Theorem	n (Most Useful Norm	-Integral Estimat	e)	
Let $\vec{r}(t)$ be	Riemann integrable on $[a, b]$	b]. Then $\ \vec{r}(t)\ $ is integrated	grable and	
	$\left\ \int_a^b \vec{r}(t)dt\right\ $	$\leq \int_a^b \ \vec{r}(t)\ \ dt$		
Proof				
I. $\ \vec{r}(t)\ $ is i	ntegrable: 🗸			
II. (in \mathbb{R}^2).	$\left\ \int_{a}^{b} \vec{r}(t) dt\right\ = \sqrt{\left(\int_{a}^{b} f\right)^{2}}$	$\frac{1}{a^2} + \left(\int_a^b g\right)^2$		
	$\leq \sqrt{\int_a^b (f^2) + \int_a^b}$	$\overline{\int_{a}^{b}(g^2)} = \sqrt{\int_{a}^{b}(f^2 + g^2)}$	$q^2)$	
	$\leq \int_a^b \sqrt{f^2+g^2}$	$=\int_a^b \ \vec{r}(t)\ \ dt.$		

Reparametrize

Definition

Two parametrizations γ_1 on [a, b] and γ_2 on [c, d] of a curve are *equivalent* iff there is a continuously differentiable bijection $u:[c, d] \rightarrow [a, b]$ such that u(c) = a, u(d) = b, and $\gamma_2 = \gamma_1 \circ u$.

Theorem

Suppose γ_1 and γ_2 are equivalent smooth parametrizations of a curve. Then $L(\gamma_1) = L(\gamma_2)$.

Proof.

Let u be the equivalence bijection for γ_1 and γ_2 . Then

$$L(\gamma_2) = \int_c^d \|\gamma'_2(t)\| dt = \int_c^d \|\gamma'_1(u(t)) \cdot u'(t)\| dt$$

= $\int_c^d \|\gamma'_1(u(t))\| \cdot u'(t) dt = \int_a^b \|\gamma_1(s)\| ds = L(\gamma_1)$

Vector Calculus

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

MAT 5620: 27

Parametrization by Arclength

Definition (Arclength Parameter)

Set $\ell(t) = \int_a^t \|\vec{r}'(\tau)\| d\tau$. Then ℓ is continuous, differentiable, a bijection, and increasing \Rightarrow it has an inverse $\ell^{-1} : [0, L(\gamma)] \to [a, b]$. So $\gamma \circ \ell^{-1} : [0, L(\gamma)] \to \mathbb{R}^n$ is the *arclength parametrization* of γ .

Example

Let $\vec{r}(t) = \langle \cos(t), \sin(t), t/3 \rangle$ on $[-4\pi, 4\pi]$.

- 1. Whence $\|\vec{r}'(t)\| = \|\langle -\sin(t), \cos(t), 1/3 \rangle\| = \sqrt{10}/3.$
- 2. Hence $\ell(t) = \int_{-4\pi}^{t} \sqrt{10}/3 \, dt = \sqrt{10}/3 \cdot (t+4\pi).$
- 3. Fortuitously, ℓ is algebraically invertible (*usually not true!*) and $\ell^{-1}(s) = (3/\sqrt{10})s 4\pi$.
- 4. Whereupon the arc length parametrized form of γ is

$$\gamma(s) = \left\langle \cos\left(\frac{3}{\sqrt{10}} s\right), \sin\left(\frac{3}{\sqrt{10}} s\right), \frac{1}{\sqrt{10}} s - \frac{4}{3} \pi \right\rangle \quad \text{on} \left[0, \frac{8\sqrt{10}}{3} \pi\right]$$