Vector Calculus

Vector Space Axioms

A set $\mathcal{V}=\{\vec{v}\}$ with addition + and scalar multiplication \cdot with scalars from a field F is a vector space over F when

1. $\langle\mathcal{V},+\rangle$ is an Abelian group.
2. - scalar multiplication distributes over vector addition

- scalar addition distributes over scalar multiplication
- multiplication of scalars 'associates' with scalar multiplication

Recall:

- The norm (magnitude) of a vector \vec{u} is $\|\vec{u}\|=\sqrt{\sum u_{i}^{2}}$
- The direction vector of \vec{u} is $(1 /\|\vec{u}\|) \cdot \vec{u}$

Definition (Dot Product in \mathbb{R}^{n} over \mathbb{R})
Dot Product

$$
\vec{u} \cdot \vec{v}=\sum u_{i} \cdot v_{i}=\|\vec{u}\|\|\vec{v}\| \cos (\angle \overline{u v})
$$

Dot Product

Proposition (Dot Product Properties)

Let \vec{u} and \vec{v} be in \mathbb{R}^{n}. Then

1. $\angle \overline{u v}=\cos ^{-1}\left[\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}\right] \quad$ angle between vectors
2. $|\vec{u} \cdot \vec{v}| \leq\|\vec{u}\|\|\vec{v}\| \quad$ Cauchy-Bunyakovsky-Schwarz inequality
3. $\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\| \quad$ Triangle inequality; (cf. Minkowski's inequality)
4. $\operatorname{proj}_{\vec{v}}(\vec{u})=\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} \quad$ (orthogonal) projection of \vec{u} onto \vec{v}

Cross Product

Definition

- Let \vec{u} and $\vec{v} \in \mathbb{R}^{3}$; set e_{1}, e_{2}, e_{3} to be std basis vectors. Then

$$
\vec{u} \times \vec{v}=\left|\begin{array}{lll}
e_{1} & e_{2} & e_{3} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

- Let $\overrightarrow{u_{1}}$ to $\vec{u}_{n-1} \in \mathbb{R}^{n}, n \geq 3$; let $\left\{e_{n}\right\}=\{$ std basis vectors $\}$. Then

$$
\times\left(\vec{u}_{1}, \ldots, \vec{u}_{n-1}\right)=\left|\begin{array}{cccc}
e_{1} & e_{2} & \ldots & e_{n} \\
u_{1,1} & u_{1,2} & \ldots & u_{1, n} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n-1,1} & u_{n-1,2} & \ldots & u_{n-1, n}
\end{array}\right|
$$

Cross Product Properties

Proposition (Cross Product Properties in \mathbb{R}^{3})

Let \vec{u}, \vec{v}, and \vec{w} be in \mathbb{R}^{3}. Then

1. $\angle \overline{u v}=\sin ^{-1}\left[\frac{\|\vec{u} \times \vec{v}\|}{\|\vec{u}\|\|\vec{v}\|}\right]$
2. $\|\vec{u} \times \vec{v}\| \leq\|\vec{u}\|\|\vec{v}\|$
3. $\vec{u} \times \vec{v}=-\vec{v} \times \vec{u} \quad$ area of $[\vec{u}, \vec{v}]=\|\vec{u} \times \vec{v}\|$
4. $\vec{u} \cdot(\vec{v} \times \vec{w})=(\vec{u} \times \vec{v}) \cdot \vec{w}=\vec{v} \cdot(\vec{w} \times \vec{u})$
5. $\vec{u} \cdot(\vec{v} \times \vec{w})=\left|\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right| ; \quad$ volume of $[\vec{u}, \vec{v}, \vec{w}]=|\vec{u} \cdot(\vec{v} \times \vec{w})|$

Parametric Equations

Definition (Parametrization)

Suppose $f: D \rightarrow \mathbb{R}, g: D \rightarrow \mathbb{R}$, and $h: D \rightarrow \mathbb{R}$. Then

$$
\gamma(t)=(f(t), g(t), h(t))
$$

for $t \in D$ is a curve (spacecurve) in \mathbb{R}^{3}. The fcns f, g, and h are parametric equations for γ, or a parametrization of γ.

Examples

1. The line segment L from \vec{u} to \vec{w} can be parametrized as

$$
L(t)=\vec{u}+(\vec{w}-\vec{u}) \cdot t, \quad t \in[0,1]
$$

2. Γ given by $f:=t->\langle\cos (t), \sin (t) * \cos (t), t *(1-t)\rangle$ for $t \in[0,3 \pi]$.
animate (spacecurve, $[f(t), t=0 \ldots 3 * P i * k$,
thickness=2],k=0..1, axes=frame, color=black,frames=30)

Continuous Spacecurves

Definition

Let $\mathcal{I}=[a, b] \subseteq \mathbb{R}$. A curve γ is

- continuous (on \mathcal{I}) if γ can be parametrized with components that are continuous on \mathcal{I}.
- smooth (on I) if γ 's parametric components are continuously differentiable on \mathcal{I}, and $f^{\prime 2}+{g^{\prime}}^{2}+h^{\prime 2}>0$ for all $t \in(a, b)$.
- piecewise smooth (on \mathcal{I}) if $[a, b]$ can be partitioned into a finite number of subintervals on which γ is smooth.

Note: Smooth \equiv a particle moving parametrically along the curve doesn't change direction abruptly, stop mid-curve, or reverse.

Theorem

If $\gamma(t)=(f(t), g(t))$ is smooth on $[a, b]$, then tangent slope at $P_{0}=(x, y)$ is given by $\frac{d y}{d x}=\frac{d y}{d t} / \frac{d x}{d t}$ when $\frac{d x}{d t} \neq 0$.

A Smooth Closed Curve

$$
\begin{gathered}
\Gamma(t)=(\sin (2 t), \sin (t), \cos (t)) \text { for } t \in[0,2 \pi] \\
\Gamma(0)=\Gamma(2 \pi)
\end{gathered}
$$

Lines in \mathbb{R}^{3}

Theorem (The Line Forms Here Thm)

A line ℓ passing through $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, parallel to $\vec{u}=(a, b, c) \neq \overrightarrow{0}$ has
vector form: $\quad \ell(t)=P_{0}+t \vec{u}, t \in \mathbb{R}$
parametric form: $\quad \ell(t)=\left(x_{0}+a t, y_{0}+b t, z_{0}+c t\right), t \in \mathbb{R}$
symmetric form: $\quad \frac{x(t)-x_{0}}{a}=\frac{y(t)-y_{0}}{b}=\frac{z(t)-z_{0}}{c}$

Consider...

Let $P_{0}=(1,2,4)$ and direction $\vec{u}=(1,2,-1)$.

1. $\ell_{1}(t)=(1+t, 2+2 t, 4-t)$

$$
\begin{array}{r}
\vec{u}=(1,2,-1) \\
\vec{w}=\frac{1}{\sqrt{6}}(1,2,-1)
\end{array}
$$

2. $\ell_{2}(s)=\left(1+\frac{1}{\sqrt{6}} s, 2+\frac{2}{\sqrt{6}} s, 4-\frac{1}{\sqrt{6}} s\right)$

Planes in \mathbb{R}^{3}

Theorem (The Plane, the Plane)

A plane P passing through $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, normal to $\vec{u}=(a, b, c) \neq \overrightarrow{0}$ is $P=\{\vec{X}\}$ s.t.
vector form: $\vec{u} \cdot\left(\vec{X}-P_{0}\right)=0$
parametric form: $\quad a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$
A plane P passing through $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, containing two vectors \vec{u} and \vec{w} is $P=\{\vec{X}\}$ s.t.
cross product form: $(\vec{u} \times \vec{w}) \cdot\left(\vec{X}-P_{0}\right)=0$

Problem

1. Find a plane containing the three points $(1,1,0),(1,0,1),(0,1,1)$.

Quadric Surfaces

Standard Forms of Quadric Surfaces

$$
\begin{aligned}
\text { sphere: } & x^{2}+y^{2}+z^{2}=r^{2} \\
\text { ellipsoid: } & \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
\end{aligned}
$$

elliptic paraboloid: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z=0$
hyperbolic paraboloid:

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+z=0
$$

elliptic cone: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z^{2}=0$
hyperboloid of 1 sheet: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=+1$
hyperboloid of 2 sheets: $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=-1$

Quadric Surfaces Reformed

Almost Standard Forms of Quadric Surfaces

$$
\begin{array}{cc}
\text { sphere: } & \rho x^{2}+\rho y^{2}+\rho z^{2}=1 \\
\text { ellipsoid: } & \alpha x^{2}+\beta y^{2}+\gamma z^{2}=1
\end{array}
$$

elliptic paraboloid: $\alpha x^{2}+\beta y^{2}-z=0$
hyperbolic paraboloid: $\quad \alpha x^{2}-\beta y^{2}+z=0$

$$
\text { elliptic cone: } \quad \alpha x^{2}+\beta y^{2}-z^{2}=0
$$

hyperboloid of 1 sheet: $\quad \alpha x^{2}+\beta y^{2}-\gamma z^{2}=+1$
hyperboloid of 2 sheets: $\quad \alpha x^{2}+\beta y^{2}-\gamma z^{2}=-1$

Vector-Valued Functions

Notation

The standard basis vectors in \mathbb{R}^{3} are
$\langle 1,0,0\rangle=e_{1}=\mathbf{i}$,
$\langle 0,1,0\rangle=e_{2}=\mathbf{j}$,
$\langle 0,0,1\rangle=e_{3}=\mathbf{k}$

If $f, g, h: D \rightarrow \mathbb{R}$ are real functions, then $\vec{r}: D \rightarrow \mathbb{R}^{3}$ given by

$$
\vec{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

is a vector-valued function with components f, g, and h.

Definition

Let $\vec{r}: D \rightarrow \mathbb{R}^{3}$ have components f, g, and h, and let t_{0} be an accumulation point of D. Then

$$
\lim _{t \rightarrow t_{0}} \vec{r}(t)=\vec{L}=L_{f} \mathbf{i}+L_{g} \mathbf{j}+L_{h} \mathbf{k}
$$

iff $(\forall \epsilon>0)(\exists \delta>0)$ s.t. $(\forall t \in D)$ if $0<\left|t-t_{0}\right|<\delta$, then $\|\vec{r}(t)-\vec{L}\|<\epsilon$.

Vector-Valued Function Limits

Theorem (Limits Work)

$$
\lim _{t \rightarrow t_{0}} \vec{r}(t)=L_{f} \mathbf{i}+L_{g} \mathbf{j}+L_{h} \mathbf{k}
$$

$$
\lim _{t \rightarrow t_{0}} f(t)=L_{f} \wedge \lim _{t \rightarrow t_{0}} g(t)=L_{g} \wedge \lim _{t \rightarrow t_{0}} h(t)=L_{h}
$$

Proof (key inequality).

$$
|a| \underset{(\models)}{\leq} \sqrt{a^{2}+b^{2}+c^{2}}=\|(a, b, c)\| \underset{(\nRightarrow)}{\leq}|a|+|b|+|c|
$$

Algebra of Vector-Valued Function Limits

Theorem (Algebra of Vector-Valued Limits)

Suppose $\vec{u}, \vec{w}: D \rightarrow \mathbb{R}^{n}, k: D \rightarrow \mathbb{R}, c \in \mathbb{R}$, and $t_{0} \in D^{\prime}$. Then

$$
\begin{align*}
\lim _{t \rightarrow t_{0}}[\vec{u} \pm \vec{w}] & =\left[\lim _{t \rightarrow t_{0}} \vec{u}\right] \pm\left[\lim _{t \rightarrow t_{0}} \vec{w}\right] \tag{1}\\
\lim _{t \rightarrow t_{0}}[c \vec{u}] & =c\left[\lim _{t \rightarrow t_{0}} \vec{u}\right] \tag{2}\\
\lim _{t \rightarrow t_{0}}[k \vec{u}] & =\left[\lim _{t \rightarrow t_{0}} k\right]\left[\lim _{t \rightarrow t_{0}} \vec{u}\right] \tag{3}\\
\lim _{t \rightarrow t_{0}}[\vec{u} \cdot \vec{w}] & =\left[\lim _{t \rightarrow t_{0}} \vec{u}\right] \cdot\left[\lim _{t \rightarrow t_{0}} \vec{w}\right] \tag{4}\\
\lim _{t \rightarrow t_{0}}[\vec{u} \times \vec{w}] & =\left[\lim _{t \rightarrow t_{0}} \vec{u}\right] \times\left[\lim _{t \rightarrow t_{0}} \vec{w}\right] \tag{5}
\end{align*}
$$

Continuity of Vector-Valued Functions

Definition (Continuity)

A function $\vec{r}(t)$ is continuous at $t_{0} \in D$ iff $(\forall \epsilon>0)(\exists \delta>0)$ s.t. $(\forall t \in D)$ if $\left|t-t_{0}\right|<\delta$, then $\left\|\vec{r}(t)-\vec{r}\left(t_{0}\right)\right\|<\epsilon$.

Proposition

1. A function $\vec{r}(t)$ is continuous at an accumulation point $t_{0} \in D$ iff

$$
\lim _{t \rightarrow t_{0}} \vec{r}(t)=\vec{r}\left(t_{0}\right)
$$

2. A function $\vec{r}(t)$ is uniformly continuous on $E \subseteq D$ iff $(\forall \epsilon>0)$ $(\exists \delta>0)$ s.t. $\left(\forall t_{1}, t_{2} \in E\right)$ if $\left|t_{1}-t_{2}\right|<\delta$, then $\left\|\vec{r}\left(t_{1}\right)-\vec{r}\left(t_{2}\right)\right\|<\epsilon$.
3. If a function $\vec{r}(t)$ is continuous on a closed and bounded set E, then \vec{r} is uniformly continuous on E.

Differentiability of Vector-Valued Functions

Definition (Differentiable)

A function $\vec{r}(t)$ is differentiable at $t_{0} \in D$ iff the limit

$$
\vec{r}^{\prime}(t)=\lim _{t \rightarrow t_{0}} \frac{\vec{r}(t)-\vec{r}\left(t_{0}\right)}{t-t_{0}}=\lim _{h \rightarrow 0} \frac{\vec{r}\left(t_{0}+h\right)-\vec{r}\left(t_{0}\right)}{h}
$$

exists and is finite.

Proposition

If f, g, and h are the components of \vec{r}, then \vec{r} is differentiable iff f, g, and h are differentiable, whence

$$
\vec{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k}
$$

Example

1. Find \vec{r}^{\prime} for the line through $P_{0}=(1,2,4)$ parallel to $\vec{u}=(1,2,-1)$.

Algebra of Vector-Valued Derivatives

Theorem (Algebra of Derivatives)

Suppose $\vec{u}, \vec{w}: D \rightarrow \mathbb{R}^{n} \& k: D \rightarrow \mathbb{R}$ are all differentiable, and $c \in \mathbb{R}$. Then

$$
\begin{align*}
{[\vec{u} \pm \vec{w}]^{\prime} } & =\left[\vec{u}^{\prime}\right] \pm\left[\vec{w}^{\prime}\right] \tag{6}\\
{[c \vec{u}]^{\prime} } & =c\left[\vec{u}^{\prime}\right] \tag{7}\\
{[k \vec{u}]^{\prime} } & =\left[k^{\prime}\right] \vec{u}+k\left[\vec{u}^{\prime}\right] \tag{8}\\
{[\vec{u} \cdot \vec{w}]^{\prime} } & =\left[\vec{u}^{\prime}\right] \cdot \vec{w}+\vec{u} \cdot\left[\vec{w}^{\prime}\right] \tag{9}\\
{[\vec{u} \times \vec{w}]^{\prime} } & =\left[\vec{u}^{\prime}\right] \times \vec{w}+\vec{u} \times\left[\vec{w}^{\prime}\right] \tag{10}\\
\|\vec{u}\|^{\prime} & =\frac{\vec{u} \cdot\left[\vec{u}^{\prime}\right]}{\|\vec{u}\|} \tag{11}\\
{[\vec{u} \circ k]^{\prime} } & =\left[\vec{u}^{\prime} \circ k\right] * k^{\prime} \tag{12}
\end{align*}
$$

Derivative Props

Properties

Suppose $\vec{r}(t)$ is a twice differentiable vector function.

1. $\vec{V}(t)=\vec{r}^{\prime}(t)$ is

- the tangent vector of \vec{r}
- the velocity vector of \vec{r}
and $S(t)=\left\|\vec{r}^{\prime}(t)\right\|$ gives the speed of $\vec{r}(t)$

2. $\vec{A}(t)=\vec{V}^{\prime}(t)=\vec{r}^{\prime \prime}(t)$ is

- the acceleration vector of \vec{r}

Example

Find the velocity \& acceleration and the speed for the function

1. $\vec{r}(t)=\left\langle 2 \cos (t), 3 \sin (t), z_{0}\right\rangle$.
2. $\vec{\rho}(t)=\langle\cos (t) \cdot(1+\cos (t)), 2 \sin (t) \cdot(1+t), t\rangle .{ }^{1}$
[^0]
Example 9.6.9

Example (9.6.9, pg 410)

Consider $\vec{u}, \vec{v}, \vec{w}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by

$$
\vec{u}=\left\langle t, t^{2}\right\rangle, \vec{v}=\left\langle t^{3}, t^{6}\right\rangle, \text { and } \vec{w}= \begin{cases}\left\langle t, t^{2}\right\rangle & \text { if } t \leq 0 \\ \left\langle t^{3}, t^{6}\right\rangle & \text { if } t>0\end{cases}
$$

All 3 functions are continuous, all trace the parabola $y=x^{2}$, and all are $\overrightarrow{0}$ at $t=0$.

1. \vec{u} is differentiable at $t=0$ with tangent vector $\vec{u}^{\prime}(0)=\langle 1,0\rangle$ and tangent line $y=0$.
2. \vec{v} is differentiable at $t=0$ with tangent vector $\vec{v}^{\prime}(0)=\langle 0,0\rangle$, but has no tangent line $\overrightarrow{0}$.
3. \vec{w} is not differentiable at $t=0$ and has no tangent line at $\overrightarrow{0}$.

See Maple demo

Circles

Proposition

Let \vec{r} be a differentiable vector function of t. Then $\|\vec{r}(t)\|$ is constant iff $\vec{r}(t) \cdot \vec{r}^{\prime}(t)=0$; i.e. \vec{r} and \vec{r}^{\prime} are orthogonal.

Proof.

$$
\|\vec{r}(t)\| \text { is constant } \Longleftrightarrow \vec{r}(t) \cdot \vec{r}(t)=c \Longleftrightarrow \vec{r}(t) \cdot \vec{r}^{\prime}(t)=0
$$

Definition

Unit tangent vector: $\vec{T}(t)=\vec{r}^{\prime}(t) /\left\|\vec{r}^{\prime}(t)\right\|$
Unit normal vector: $\vec{N}(t)=\overrightarrow{T^{\prime}}(t) /\left\|\vec{T}^{\prime}(t)\right\|$
$\vec{V}=\vec{r}^{\prime}$ and $v=\|\vec{V}\|$. Then $\vec{A}=\vec{V}^{\prime}=v \vec{T}^{\prime}+v^{\prime} \vec{T}$. Since $\vec{T}^{\prime} \perp \vec{T}$, then $\vec{A}_{\vec{N}}=v \vec{T}^{\prime}$ and $\vec{A}_{\vec{T}}=v^{\prime} \vec{T}$ forms an orthogonal decomp of \vec{A}

$\mathrm{D}^{e} \mathrm{Cr}$ æft

Project

Using

$$
\begin{align*}
\vec{r}^{\prime \prime}=\vec{A} & =v \vec{T}^{\prime}+v^{\prime} \vec{T} \tag{13}\\
\vec{A} & =\vec{A}_{\vec{N}}+\vec{A}_{\vec{T}} \tag{14}
\end{align*}
$$

1. Compute $\vec{A} \cdot \vec{T}$?
2. What vector is $(\vec{A} \cdot \vec{T}) \vec{T}$?
3. Compute $\vec{A}-(\vec{A} \cdot \vec{T}) \vec{T}$?
4. Apply this idea to $\vec{r}(t)=\langle\cos (t), \sin (t)\rangle$. What are \vec{A} 's orthognal components?

Int

Definition

$$
\int_{a}^{b} \vec{r}(t) d t=\left[\int_{a}^{b} f(t) d t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) d t\right] \mathbf{j}+\left[\int_{a}^{b} h(t) d t\right] \mathbf{k}
$$

iff the integrals exist. I.e., $\int_{a}^{b}\left\langle f_{i}\right\rangle(t) d t=\left\langle\int_{a}^{b} f_{i}(t) d t\right\rangle$.

Theorem (FToC)

Suppose $\vec{r}(t)$ is integrable on $[a, b]$ and $\vec{R}(t)$ is an antiderivative (or primitive) for \vec{r}. Then

$$
\int_{a}^{b} \vec{r}(t) d t=\left.\vec{R}(t)\right|_{a} ^{b}=\vec{R}(b)-\vec{R}(a)
$$

Theorem

Suppose $\vec{r}(t)$ is integrable on $[a, b]$. Then

$$
\left\|\int_{a}^{b} \vec{r}(t) d t\right\| \leq \int_{a}^{b}\|\vec{r}(t)\| d t
$$

Arclength

Definition (Arclength)

Let $\gamma(t)=\vec{r}(t)$ be a smooth curve on $[a, b]$. The length of γ on $[a, b]$ is

$$
L(\gamma)=\sup \left\{L_{Q} \mid Q \text { partitions }[a, b]\right\}
$$

where $L_{Q}=\sum_{k}\left\|\gamma\left(t_{k}\right)-\gamma\left(t_{k-1}\right)\right\|$ for $t_{k} \in Q$.

Proposition

Let $\gamma(t)=\vec{r}(t)$ be a smooth curve on $[a, b]$. The length of γ on $[a, b]$ is $L(\gamma)=\lim _{|Q| \rightarrow 0} L_{Q}$ where $|Q|$ is the norm of the partition.

Theorem (Useful Arclength Theorem)

Let $\gamma(t)=\vec{r}(t)$ be a smooth curve on $[a, b]$. The length of γ on $[a, b]$ is

$$
L(\gamma)=\int_{a}^{b} \sqrt{\sum_{k}\left(f_{k}^{\prime}\right)^{2}} d t=\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t
$$

Proof

Proof (UAT).

I. Let Q be a partition. Fix k. Whereupon

$$
\sqrt{\left.\sum_{j}\left[f_{j}\left(t_{k}\right)\right)-f_{j}\left(t_{k-1}\right)\right]^{2}}=\left\|\vec{r}\left(t_{k}\right)-\vec{r}\left(t_{k-1}\right)\right\|=\left\|\int_{t_{k-1}}^{t_{k}} \vec{r}^{\prime}(t) d t\right\|
$$

Since $\left\|\int \vec{r}^{\prime} d t\right\| \leq \int\left\|\vec{r}^{\prime}\right\| d t$, then $L(\gamma) \leq \int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t$.
II. Let $\varepsilon>0$. Choose $\delta>0$ s.t. $\|\vec{r}(s)-\vec{r}(t)\|<\varepsilon$ for $|s-t|<\delta$. Choose $|Q|<\delta$.

1. $\int_{t_{k}}^{t_{k+1}}\left\|\vec{r}^{\prime}(t)\right\| d t \leq \int_{t_{k}}^{t_{k+1}}\left\|\vec{r}^{\prime}\left(t_{k+1}\right)\right\|+\varepsilon d t=\int_{t_{k}}^{t_{k+1}}\left\|\vec{r}^{\prime}\left(t_{k+1}\right)\right\| d t+\varepsilon \Delta t_{k}$
2. $\leq\left\|\int_{t_{k}}^{t_{k+1}} \vec{r}^{\prime}(t) d t\right\|+\left\|\int_{t_{k}}^{t_{k+1}}\left[\vec{r}^{\prime}\left(t_{k+1}\right)-\vec{r}^{\prime}(t)\right] d t\right\|+\varepsilon \Delta t_{k}$
3. $\leq\left\|\vec{r}\left(t_{k+1}\right)-\vec{r}\left(t_{k}\right)\right\|+2 \varepsilon \Delta t_{k} \Longrightarrow \int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t \leq L_{Q}+2 \varepsilon(b-a)$

Hence $\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t \leq L(\gamma)$.

Rectified

Definition (Recifiable Curve)

A curve γ is rectifiable iff $L(\gamma)$ is finite.

Examples (Curves²)

I. Let $\gamma(t)=\langle\cos (\pi t), \sin (\pi t), \sqrt{3} \pi t\rangle$ on $[0,1]$.

1. $L(\gamma)=\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\| d t$
2. $=\int_{0}^{1}\|\pi\langle-\sin (\pi t), \cos (\pi t), \sqrt{3}\rangle\| d t=2 \pi$
II. Let $\psi(t)=\langle\tan (t), 1-\sin (t), \cos (t)\rangle$ on $[0, \pi / 2]$.
3. $L(\psi)=\int_{0}^{1}\left\|\psi^{\prime}(t)\right\| d t$
4. $=\int_{0}^{1}\left\|\left\langle\sec ^{2}(t),-\cos (t),-\sin (t)\right\rangle\right\| d t=\infty$

Interlude

Theorem (Most Useful Norm-Integral Estimate)

Let $\vec{r}(t)$ be Riemann integrable on $[a, b]$. Then $\|\vec{r}(t)\|$ is integrable and

$$
\left\|\int_{a}^{b} \vec{r}(t) d t\right\| \leq \int_{a}^{b}\|\vec{r}(t)\| d t
$$

Proof.

I. $\|\vec{r}(t)\|$ is integrable: \checkmark
II. (in \mathbb{R}^{2}). $\left\|\int_{a}^{b} \vec{r}(t) d t\right\|=\sqrt{\left(\int_{a}^{b} f\right)^{2}+\left(\int_{a}^{b} g\right)^{2}}$

$$
\begin{aligned}
& \leq \sqrt{\int_{a}^{b}\left(f^{2}\right)+\int_{a}^{b}\left(g^{2}\right)}=\sqrt{\int_{a}^{b}\left(f^{2}+g^{2}\right)} \\
& \leq \int_{a}^{b} \sqrt{f^{2}+g^{2}}=\int_{a}^{b}\|\vec{r}(t)\| d t
\end{aligned}
$$

Reparametrize

Definition

Two parametrizations γ_{1} on $[a, b]$ and γ_{2} on $[c, d]$ of a curve are equivalent iff there is a continuously differentiable bijection $u:[c, d] \rightarrow[a, b]$ such that $u(c)=a, u(d)=b$, and $\gamma_{2}=\gamma_{1} \circ u$.

Theorem

Suppose γ_{1} and γ_{2} are equivalent smooth parametrizations of a curve. Then $L\left(\gamma_{1}\right)=L\left(\gamma_{2}\right)$.

Proof.

Let u be the equivalence bijection for γ_{1} and γ_{2}. Then

$$
\begin{aligned}
L\left(\gamma_{2}\right) & =\int_{c}^{d}\left\|\gamma_{2}^{\prime}(t)\right\| d t=\int_{c}^{d}\left\|\gamma_{1}^{\prime}(u(t)) \cdot u^{\prime}(t)\right\| d t \\
& =\int_{c}^{d}\left\|\gamma_{1}^{\prime}(u(t))\right\| \cdot u^{\prime}(t) d t=\int_{a}^{b}\left\|\gamma_{1}(s)\right\| d s=L\left(\gamma_{1}\right)
\end{aligned}
$$

Parametrization by Arclength

Definition (Arclength Parameter)

Set $\ell(t)=\int_{a}^{t}\left\|\vec{r}^{\prime}(\tau)\right\| d \tau$. Then ℓ is continuous, differentiable, a bijection, and increasing \Rightarrow it has an inverse $\ell^{-1}:[0, L(\gamma)] \rightarrow[a, b]$.
So $\gamma \circ \ell^{-1}:[0, L(\gamma)] \rightarrow \mathbb{R}^{n}$ is the arclength parametrization of γ.

Example

Let $\vec{r}(t)=\langle\cos (t), \sin (t), t / 3\rangle$ on $[-4 \pi, 4 \pi]$.

1. Whence $\left\|\vec{r}^{\prime}(t)\right\|=\|\langle-\sin (t), \cos (t), 1 / 3\rangle\|=\sqrt{10} / 3$.
2. Hence $\ell(t)=\int_{-4 \pi}^{t} \sqrt{10} / 3 d t=\sqrt{10} / 3 \cdot(t+4 \pi)$.
3. Fortuitously, ℓ is algebraically invertible (usually not true!) and $\ell^{-1}(s)=(3 / \sqrt{10}) s-4 \pi$.
4. Whereupon the arc length parametrized form of γ is

$$
\gamma(s)=\left\langle\cos \left(\frac{3}{\sqrt{10}} s\right), \sin \left(\frac{3}{\sqrt{10}} s\right), \frac{1}{\sqrt{10}} s-\frac{4}{3} \pi\right\rangle \quad \text { on }\left[0, \frac{8 \sqrt{10}}{3} \pi\right]
$$

[^0]: ${ }^{1}$ spacecurve ($f(t), t=0 . .6 *$ Pi, numpoints $=101$, thickness $=3$, axes=normal)

