T/F Summary

Prove or Disprove and Salvage

1. If $\vec{u} \times \vec{v}=\overrightarrow{0}$, then $\vec{u}=\overrightarrow{0}$, or $\vec{v}=\overrightarrow{0}$, or both.
2. $(\vec{u} \times \vec{v}) \cdot \vec{w}=\vec{u} \cdot(\vec{v} \times \vec{w})=[\vec{u}, \vec{v}, \vec{w}]$.
3. The length of the function f on the interval $[a, b]$ is given by $\int_{a}^{b} \sqrt{\left[f^{\prime}(x)\right]^{2}+1} d x$, provided that this integral is finite.
4. If \vec{u} is a vector, then $\vec{u}=(\vec{u} \cdot \mathbf{i}) \mathbf{i}+(\vec{u} \cdot \mathbf{j}) \mathbf{j}+(\vec{u} \cdot \mathbf{k}) \mathbf{k}$.
5. If $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ is defined by

$$
\gamma(t)= \begin{cases}\left\langle t, t^{2} \sin (1 / t)\right\rangle & t \in[0,1) \\ \langle 0,0\rangle & t=0\end{cases}
$$

then γ is rectifiable.
6. If \vec{u}, \vec{v}, and \vec{w} are mutually orthogonal, then $\vec{u} \times(\vec{v} \times \vec{w})=\overrightarrow{0}$.
7. If \vec{u} and \vec{v} are Riemann integrable vector-valued functions on $[a, b]$, then $\int_{a}^{b}[\vec{u} \cdot \vec{v}] d t=\left[\int_{a}^{b} \vec{u} d t\right] \cdot\left[\int_{a}^{b} \vec{v} d t\right]$.

Interlude: Inner Products

Definition (Inner Product)

Suppose that \vec{u}, \vec{v}, and \vec{w} are vectors in a vector space V over the field F, and that $c \in F$ is a scalar. An inner product is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow F$ such that

1. $\langle\vec{u}, \vec{w}\rangle=\langle\vec{w}, \vec{u}\rangle \quad$ commutative
2. $\langle\vec{u}+\vec{v}, \vec{w}\rangle=\langle\vec{u}, \vec{w}\rangle+\langle\vec{v}, \vec{w}\rangle$
3. $\langle c \vec{u}, \vec{v}\rangle=c\langle\vec{u}, \vec{v}\rangle$
$\left.\begin{array}{c}\text { additivity } \\ \text { scalar homogeneity }\end{array}\right\}$ bi-linear
4. $\langle\vec{u}, \vec{u}\rangle \geq 0$
5. $\langle\vec{u}, \vec{u}\rangle=0$ iff $\vec{u}=\overrightarrow{0}$

Examples

1. The usual dot product on \mathbb{R}^{3}.
2. For $p(x)=\sum^{n} a_{j} x^{j}$ and $q(x)=\sum^{n} b_{j} x^{j} \in \mathbb{P}^{n}$, set $\langle p, q\rangle=\sum^{n} a_{i} b_{i}$.

Interlude: Orthogonality

Proposition

Suppose that $f(x), g(x):[a, b] \rightarrow \mathbb{R}$ are (piecewise) continuous functions. Then

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

is an inner product on the vector space of (piecewise) continuous functions on $[a, b]$

Definition (Orthogonal Vectors)

Suppose that \vec{u} and \vec{w} are vectors in a vector space V over the field F. Then \vec{u} is orthogonal to \vec{w} iff $\langle\vec{u}, \vec{w}\rangle=0$.

Example (Orthogonal Functions)

1. $\langle\sin , \cos \rangle=\int_{-\pi}^{\pi} \sin (\theta) \cos (\theta) d \theta=0 \Longrightarrow \operatorname{sine} \perp \operatorname{cosine}$ on $[-\pi, \pi]$

Interlude: Orthogonal Polynomials

Example (The Legendre Polynomials)

The Legendre polynomials are orthogonal on $[-1,1]$ wrt $\langle f, g\rangle=\int_{-1}^{1} f g d x$.
Two formulas for the Legendre polynomials P_{n} are

1. Rodrigues' formula: $\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right]$.
2. recurrence relation: $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)$.

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right) \\
& P_{6}(x)=\frac{1}{16}\left(231 x^{6}-315 x^{4}+105 x^{2}-5\right) \\
& P_{7}(x)=\frac{1}{16}\left(428 x^{7}-693 x^{5}+315 x^{3}-35 x\right)
\end{aligned}
$$

Interlude: Legendre Polynomials’ Graphs

Maple

Interlude: Expansions in Legendre Polynomials

Proposition (Orthonormalized Legendre Polynomials)

Let $p_{n}(x)=\sqrt{\frac{2 n+1}{2}} \cdot P_{n}(x)$. Then $\left\langle p_{n}, p_{m}\right\rangle=\delta_{m, n}$.

Theorem

Let f be integrable on $[-1,1]$, and set $a_{n}=\left\langle f, p_{n}\right\rangle$. Then

$$
f_{n}(x)=\sum_{k=0}^{n} a_{n} p_{n}(x) \underset{n}{\longrightarrow} f(x)
$$

Example

For $f(x)=\sin (\pi x)$ on $[0, a]$, we have

$$
\begin{gathered}
a:=\left[0, \frac{\sqrt{6}}{\pi}, 0, \frac{\sqrt{14}}{\pi^{3}}\left(\pi^{2}-15\right), 0, \frac{\sqrt{22}}{\pi^{5}}\left(\pi^{4}-105 \pi^{2}+945\right), 0, \ldots\right] \\
\sin _{3}(x)=\frac{\sqrt{6}}{\pi} p_{1}(x)+\frac{\sqrt{14}}{\pi^{3}}\left(\pi^{2}-15\right) p_{3}(x)=-\frac{15}{2} \frac{\pi^{2}-21}{\pi^{3}} x+\frac{35}{2} \frac{\pi^{2}-15}{\pi^{3}} x^{3}
\end{gathered}
$$

Interlude: Legendre Expansion Graph

$f(x)=\sin (\pi x)$
$f_{3}(x)$: Legendre expansion
$T_{3}(x)$: Taylor expansion

MAT 5620: 37

Basic Topology of \mathbb{R}^{n}

Definition (Total Recall:)

Open ball: $B(\vec{c} ; r)=\{\vec{x} \mid\|\vec{x}-\vec{c}\|<r\} \subseteq \mathbb{R}^{n}$
Punct'd ball: $B^{\prime}(\vec{c} ; r)=\{\vec{x} \mid 0<\|\vec{x}-\vec{c}\|<r\} \subset \mathbb{R}^{n} ; \quad$ NB: $\vec{c} \notin B^{\prime}(\vec{c} ; r)$
Interior point: $\vec{a} \in \operatorname{int}(S)$ iff $\exists \varepsilon>0$ such that $B(\vec{a} ; \varepsilon) \subset S$
Open set: S is open iff $S=\operatorname{int}(S)$
Accum point: \vec{a} in an accumulation pt of S iff $\forall \varepsilon>0\left[B^{\prime}(\vec{a} ; \varepsilon) \cap S\right] \neq \emptyset$
Derived set: $S^{\prime}=\{$ all accumulation pts of $S\}$
Closed set: S is closed iff $S^{\prime} \subseteq S$
Closure: The closure of S is $\bar{S}=S \cup S^{\prime}$
Boundary pt: \vec{b} is a boundary pt of S iff $B(\vec{b} ; \varepsilon)$ contains points both of S and S complement for all $\varepsilon>0$

Boundary: $\partial S=\{$ all boundary pts of $S\}$
Isolated pt: \vec{a} in an isolated pt of S iff $\exists \varepsilon>0\left[B^{\prime}(\vec{a} ; \varepsilon) \cap S\right]=\emptyset$

