Vector Calculus

T/F Summary

Prove or Disprove and Salvage

- 1. If $\vec{u} \times \vec{v} = \vec{0}$, then $\vec{u} = \vec{0}$, or $\vec{v} = \vec{0}$, or both.
- **2.** $(\vec{u} \times \vec{v}) \cdot \vec{w} = \vec{u} \cdot (\vec{v} \times \vec{w}) = [\vec{u}, \vec{v}, \vec{w}].$
- 3. The length of the function f on the interval [a, b] is given by $\int_{a}^{b} \sqrt{[f'(x)]^2 + 1} dx$, provided that this integral is finite.
- 4. If \vec{u} is a vector, then $\vec{u} = (\vec{u} \cdot \mathbf{i})\mathbf{i} + (\vec{u} \cdot \mathbf{j})\mathbf{j} + (\vec{u} \cdot \mathbf{k})\mathbf{k}$.
- 5. If $\gamma: [0,1] \to \mathbb{R}^2$ is defined by

$$\gamma(t) = \begin{cases} \langle t, t^2 \sin(1/t) \rangle & t \in [0, 1) \\ \langle 0, 0 \rangle & t = 0 \end{cases}$$

then γ is rectifiable.

- 6. If \vec{u} , \vec{v} , and \vec{w} are mutually orthogonal, then $\vec{u} \times (\vec{v} \times \vec{w}) = \vec{0}$.
- 7. If \vec{u} and \vec{v} are Riemann integrable vector-valued functions on [a, b], then $\int_{a}^{b} [\vec{u} \cdot \vec{v}] dt = \left[\int_{a}^{b} \vec{u} dt\right] \cdot \left[\int_{a}^{b} \vec{v} dt\right].$

MAT 5620: 31

Interlude: Orthogonality

Proposition

Suppose that $f(x), g(x) : [a, b] \to \mathbb{R}$ are (piecewise) continuous functions. Then

$$\langle f,g \rangle = \int_{a}^{b} f(x)g(x) \, dx$$

is an inner product on the vector space of (piecewise) continuous functions on [a, b]

Definition (Orthogonal Vectors)

Suppose that \vec{u} and \vec{w} are vectors in a vector space V over the field F. Then \vec{u} is orthogonal to \vec{w} iff $\langle \vec{u}, \vec{w} \rangle = 0$.

Interlude: Expansions in Legendre Polynomials

Proposition (Orthonormalized Legendre Polynomials) Let $p_n(x) = \sqrt{\frac{2n+1}{2}} \cdot P_n(x)$. Then $\langle p_n, p_m \rangle = \delta_{m,n}$.

Theorem

Let *f* be integrable on
$$[-1, 1]$$
, and set $a_n = \langle f, p_n \rangle$. Then

$$f_n(x) = \sum_{k=0}^n a_n p_n(x) \xrightarrow[n]{} f(x)$$

Example

For $f(x) = \sin(\pi x)$ on [0, a], we have $a := \left[0, \frac{\sqrt{6}}{\pi}, 0, \frac{\sqrt{14}}{\pi^3} \left(\pi^2 - 15\right), 0, \frac{\sqrt{22}}{\pi^5} \left(\pi^4 - 105\pi^2 + 945\right), 0, \dots\right]$ $\sin_3(x) = \frac{\sqrt{6}}{\pi} p_1(x) + \frac{\sqrt{14}}{\pi^3} \left(\pi^2 - 15\right) p_3(x) = -\frac{15}{2} \frac{\pi^2 - 21}{\pi^3} x + \frac{35}{2} \frac{\pi^2 - 15}{\pi^3} x^3$

Interlude: Legendre Expansion Graph

r Calculus	Functions of Two Variables	Iultiple Integration	Intro to Lebesgue N
	Basic Topology	y of \mathbb{R}^n	
Definition (Total Recall:)		
Open ball:	$B(\vec{c};r) = \{\vec{x} \mid \vec{x} - \vec{c} < r\} \subseteq$	\mathbb{R}^n	
Punct'd ball:	$B'(\vec{c};r) = \{\vec{x} \mid 0 < \ \vec{x} - \vec{c}\ <$	$r\} \subset \mathbb{R}^n;$	NB: $\vec{c} \notin B'(\vec{c}; r)$
Interior point:	$\vec{a} \in \operatorname{int}(S)$ iff $\exists \varepsilon \! > \! 0$ such that	$B(\vec{a};\varepsilon)\subset S$	
Open set:	$S \text{ is open iff } S = \operatorname{int}(S)$		
Accum point:	$ec{a}$ in an <i>accumulation pt</i> of S i	ff $\forall \varepsilon > 0 \; [B'(\vec{a}; \varepsilon)]$	$)\cap S] \neq \emptyset$
Derived set:	$S' = \{$ all accumulation pts of	$S\}$	
Closed set:	S is <i>closed</i> iff $S' \subseteq S$		
Closure:	The closure of S is $\overline{S} = S \cup S$	5'	
· · ·	\vec{b} is a <i>boundary pt</i> of S iff $B(\vec{b};\varepsilon)$ contains points both of S and S complement for all $\varepsilon\!>\!0$		
Boundary:	$\partial S = \{ all boundary pts of S \}$		
Isolated pt:	$ec{a}$ in an <i>isolated pt</i> of S iff $\exists arepsilon$:	$>0 \ [B'(\vec{a};\varepsilon) \cap S]$	$] = \emptyset$