Proper Stichens

Proposition (Open Sets)

1. If \mathcal{I} is an indexing set for a family of open sets $\{O_i\}$, then the set $\mathcal{O} = \bigcup_{i \in \mathcal{I}} O_i$ is open. (Arbitrary unions of open sets are open.)

2. If $\{O_i\}_{i=1}^n$ is a finite family of open sets, then $\mathcal{O} = \bigcap_{i=1}^n O_i$ is open. (Finite intersections of open sets are open.)

Examples

1. Let $O_x = (-x, x)$ for $x \in (0, 1) = \mathcal{I}$. Then

$$\bigcup_{i\in\mathcal{I}}O_i=?\qquad\qquad\bigcap_{i\in\mathcal{I}}O_i=2$$

2. Let $P_i = \left(-1 - \frac{1}{i}, 1 - \frac{1}{i}\right)$ for i = 1..n. Then $\bigcap_{i=1}^{n} P_i = ? \qquad \qquad \bigcup_{i=1}^{n} P_i = ?$

MAT 5620: 37

MAT 5620: 38

Proper Themes

CIT ntor Intersection Theore for some, then done.	m).
for some, then done.	m).
for some, then done.	m).
infinite. Define $S = \bigcap_{k=1}^{\infty} F_k$	
ed.	
he the sequence $A = \{a_k\}$ by clach k .	hoosing distinct points $a_k \in F_k$ Uses: F_k 's are infinite.
e F_1 is bounded, the sequence	forms a bounded, infinite set.
efore A has an accumulation pt	a. Bolzano-Weierstrass!
r > 0 and set $B = B'(a; r)$. Since ains ∞ many pts of A . As the F ain ∞ many pts of F_k . Whence	T_k 's are nested, B also must
closed, so $a \in F_k$.	
F_k are nested, so $a \in igcap_k F_k$; i.e	e., the intersection is nonempty.
	ed. The the sequence $A = \{a_k\}$ by clear the sequence $A = \{a_k\}$ by clear the sequence F_1 is bounded, the sequence refore A has an accumulation ptheory of A has an accumulation ptheory of A has the F and ∞ many pts of A . As the F and ∞ many pts of F_k . Whence a closed, so $a \in F_k$.

Sample Intersections

Examples (CIT)

1. Define: $F_0 = [0, 1]; F_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1] = F_0 - (\frac{1}{3}, \frac{2}{3});$ $F_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1];$ &c. Hence $F_n = \bigcup_{k=0}^{\lfloor 3^n/2 \rfloor} \left[\frac{2k}{3^n}, \frac{2k+1}{3^n} \right]_{J(k,n)}$ Let $C = \bigcap_n F_n$. Whence $CIT \implies C$ is nonempty and closed. 2. Let $H_n = [n, \infty)$. Then H_n is a sequence of nested, closed sets. But $\bigcap_n H_n = ?$ 3. Set $J_n = (-\frac{n+1}{n^2}, \frac{n+1}{n^2})$. Then J_n is a sequence of bounded, nested sets. But $\bigcap_n J_n = ?$

MAT 5620: 41

Multiple Integration

Limiting Examples

Theorem (The Algebra of Limits) Let $f, g: D \to \mathbb{R}$ and $\vec{a} \in D'$. Suppose $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) = L_f$ and $\lim_{\vec{x}\to\vec{a}} g(\vec{x}) = L_g$. Then 1. $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) \pm g(\vec{x}) = L_f \pm L_g$ 2. $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) \cdot g(\vec{x}) = L_f \cdot L_g$ 3. $\lim_{\vec{x}\to\vec{a}} \frac{f(\vec{x})}{g(\vec{x})} = \frac{L_f}{L_g}$ as long as $L_g \neq 0$ 4. $\lim_{\vec{x}\to\vec{a}} |f(\vec{x})| = |L_f|$ 5. *if* $f(\vec{x}) \leq g(\vec{x})$ on some $B'(\vec{a}; r)$, then $L_f \leq L_g$

Proof.

2. $(D \subseteq \mathbb{R}^2)$ Let $\vec{a}_n \to \vec{a}$. Since $(fg)(\vec{a}_n) = f(\vec{a}_n) g(\vec{a}_n)$, and f & g are continuous at \vec{a} , we have $f(\vec{a}_n) g(\vec{a}_n) \to f(\vec{a}) g(\vec{a}) = (fg)(\vec{a})$. Thus $(fg)(\vec{a}_n) \to (fg)(\vec{a})$ for any sequence $\vec{a}_n \to \vec{a}$; hence, fg is continuous at \vec{a} .

(Note: Thm 10.2.9 has problems: g & f can't be composed as $\operatorname{range}(f) \subset \mathbb{R}^1$, but $\operatorname{dom}(g) \subset \mathbb{R}^2$. So $\operatorname{range}(f) \not\subseteq \operatorname{dom}(g)$.

MAT 5620: 49

Continuously Reverted

Proposition

 $f: \mathbb{R}^n \to \mathbb{R}$ is continuous iff

- the preimage of any open set (in \mathbb{R}^1) is open (in \mathbb{R}^n).
- the preimage of any closed set (in \mathbb{R}^1) is closed (in \mathbb{R}^n).

Proof.

- $\begin{array}{l} (\Rightarrow) \mbox{ Assume } f \mbox{ is cont and } S \mbox{ is open in } \mathbb{R}^1. \\ \mbox{ Let } \vec{a} \in f^{-1}(S); \mbox{ i.e. } f(\vec{a}) \in S. \mbox{ For some } r > 0, \mbox{ then } B(f(a); r) \subseteq S. \\ \mbox{ Whence there is a } \delta > 0, \mbox{ s.t. } f(B(\vec{a}; \delta)) \subseteq B(f(a); r) \subseteq S. \\ \mbox{ Hence } B(\vec{a}; \delta) \subseteq f^{-1}(S). \end{array}$
- $\begin{array}{l} (\Leftarrow) \ \, \text{Assume } f^{-1}(S) \text{ is open whenever } S \text{ is open.} \\ \quad \text{Let } \vec{a} \in f^{-1}(S) \text{ and } \varepsilon > 0. \ \, \text{Thence } f^{-1}(B(f(\vec{a};\varepsilon)) \text{ is open.} \\ \quad \text{Thus there is a } \delta > 0 \text{ s.t. } B(\vec{a};\delta) \subseteq f^{-1}(B(f(\vec{a};\varepsilon)). \\ \quad \text{Apply } f \text{ to have } f(B(\vec{a};\delta)) \subseteq B(f(\vec{a};\varepsilon)). \end{array}$

Uniform

Definition (Uniform Continuity)

A function $f: D \to \mathbb{R}$ is *uniformly continuous on* D iff for any $\varepsilon > 0$ there is a $\delta > 0$ s.t. for all $\vec{x}_1, \vec{x}_2 \in D$, if $||\vec{x}_1 - \vec{x}_2|| < \delta$, then $|f(\vec{x}_1) - f(\vec{x}_2)| < \varepsilon$.

Theorem

If f is continuous on D, and D is closed & bounded (compact), then

- 1. *f* is bounded,
- 2. f attains extreme values (max and min),
- **3**. *f* is uniformly continuous on *D*.

Proof (Homework).

- 1. Hint: Assume not, then look at $f^{-1}(a_n)$ where $a_n \to \infty$.
- 2. Bolzano-Weierstrass in action.
- 3. Hint: Assume not. Create sequences \vec{x}_n , \vec{y}_n that converge to \vec{a} , but have $|f(\vec{x}_n) f(\vec{y}_n)| > \varepsilon$. Cont gives a contradiction.

Vector Calculus

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

MAT 5620: 51

Connecting to Rudolph Otto

Theorem

Let $f: D \to \mathbb{R}$ be continuous and let *S* be a connected subset of *D*. Then f(S) is connected. (A connected set in \mathbb{R} is an interval.)

Proof.

Suppose $f(S) = A \cup B$ with A & B nonempty, separated sets in \mathbb{R} . Define $G = S \cap f^{-1}(A)$ and $H = S \cap f^{-1}(B)$.

- 1. $S = G \cup H$ since $f: S \xrightarrow{\text{onto}} f(S)$.
- 2. Let $\vec{y} \in A$. $(A \neq \emptyset)$. $\exists \vec{x} \in S$ s.t. $f(\vec{x}) = \vec{y}$. Thus $\vec{x} \in G \implies G \neq \emptyset$. Similarly, $H \neq \emptyset$.
- 3. Let $\vec{p} \in \overline{G} \cap H$. If $\vec{p} \in G$, then $\vec{p} \in G \cap H$. Then $\vec{p} \in f^{-1}(A \cap B)$; i.e., $f(\vec{p}) \in A \cap B = \emptyset$. Thus $\vec{p} \notin G$, whence $\vec{p} \in G'$ and $f(\vec{p}) \in B$. Since $\overline{A} \cap B = \emptyset$ and $\vec{p} \in B$, $\exists \varepsilon > 0$ s.t. $B(f(\vec{p}); \varepsilon) \cap A = \emptyset$. Since f is cont, $\exists \delta > 0$ s.t. $f(B(\vec{p}; \delta)) \subset B(f(\vec{p}); \varepsilon)$. Then $B(\vec{p}; \delta) \cap G$ is empty contrary to $\vec{p} \in G'$. Hence $\overline{G} \cap H = \emptyset$. Similarly $G \cap \overline{H} = \emptyset$.
- 4. Whereupon S is separated by G and H. oops $\rightarrow \leftarrow$

Fun with Functions

Problem (Functions)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Let A and B be subsets of the domain and range of f, respectively. Then

 $f(A) = \{y \in \mathbb{R} \mid f(a) = y \text{ for some } a \in A\} \subseteq \operatorname{range}(f)$

$$f^{-1}(B) = \{x \in \mathbb{R}^n \mid f(x) = b \text{ for some } b \in B\} \subseteq \operatorname{dom}(f)$$

Give an example justifying your answer.

- 1. **T** or **F**: $A \subseteq f^{-1}(f(A))$
- $f^{-1}(f(A)) \subset A$
- 2. **T** or **F**: $A = f^{-1}(f(A))$ 5. **T** or **F**: $B = f(f^{-1}(B))$

4. T or **F**: $B \subseteq f(f^{-1}(B))$

3. T or F: $A \supseteq f^{-1}(f(A))$ or **6.** T or F: $B \supseteq f(f^{-1}(B))$ or $f(f^{-1}(B)) \subseteq B$

MAT 5620: 53

Functions of Two Variables Multiple Integration Intro to Lebesgue Measure Rudolph Otto S von L **Definition (Lipschitz Condition)** If there is a constant L s.t. $|f(\vec{x}_1) - f(\vec{x}_2)| < L \|\vec{x}_1 - \vec{x}_1\|$ for all $f\vec{x}_1, \vec{x}_2 \in D$, then f satisfies a *Lipschitz condition on* D (also called a "Lipschitz 1" condition). Proposition A function that is Lipschitz on D is uniformly continuous on D. Proof. Suppose f is Lipschitz with constant L. Let $\varepsilon > 0$. Choose $0 < \delta < \varepsilon/L$. For any vectors \vec{x}_1 and \vec{x}_2 in dom(f)with $\|\vec{x}_1 - \vec{x}_2\| < \delta$, we have $|f(\vec{x}_1) - f(\vec{x}_2)| \le L \|\vec{x}_1 - \vec{x}_2\| \le L\delta < \varepsilon$

MAT 5620: 54

Multiple Integration

Exercise

