Proper Stichens

Proposition (Open Sets)

1. If \mathcal{I} is an indexing set for a family of open sets $\left\{O_{i}\right\}$, then the set $\mathcal{O}=\bigcup_{i \in \mathcal{I}} O_{i}$ is open.
(Arbitrary unions of open sets are open.)
2. If $\left\{O_{i}\right\}_{i=1}^{n}$ is a finite family of open sets, then $\mathcal{O}=\bigcap_{i=1}^{n} O_{i}$ is open.
(Finite intersections of open sets are open.)

Examples

1. Let $O_{x}=(-x, x)$ for $x \in(0,1)=\mathcal{I}$. Then

$$
\bigcup_{i \in \mathcal{I}} O_{i}=? \quad \bigcap_{i \in \mathcal{I}} O_{i}=?
$$

2. Let $P_{i}=\left(-1-\frac{1}{i}, 1-\frac{1}{i}\right)$ for $i=1$..n. Then

$$
\bigcap_{i=1}^{n} P_{i}=? \quad \bigcup_{i=1}^{n} P_{i}=?
$$

Closed to Stichens

Proposition (Closed Sets)

1. If \mathcal{I} is an indexing set for a family of closed sets $\left\{F_{i}\right\}$, then the set $\mathcal{F}=\bigcap_{i \in \mathcal{I}} F_{i}$ is closed. (Arbitrary intersections of closed sets are closed.)
2. If $\left\{F_{i}\right\}_{i=1}^{n}$ is a finite family of closed sets, then $\mathcal{O}=\bigcup_{i=1}^{n} F_{i}$ is closed.
(Finite unions of closed sets are closed.)

Examples

1. Let $F_{k}=\left[-1+\frac{1}{k}, 1-\frac{1}{k}\right]$ for $k \in \mathbb{N}$. Then

$$
\bigcap_{k \in \mathbb{N}} F_{k}=? \quad \bigcup_{k \in \mathbb{N}} F_{k}=?
$$

2. Let $H_{i}=\left[-1,1-\frac{1}{i}\right]{ }_{n}$ for $i=1$..n. Then

$$
\bigcap_{i=1}^{n} H_{i}=? \quad \bigcup_{i=1}^{n} H_{i}=?
$$

Proper Themes

Theorem (Bolzano-Weierstrass Theorem)

A bounded, infinite subset of \mathbb{R}^{n} has an accumulation point.

Proof.

Lion in the desert.

Theorem (Heine-Borel Theorem)

A subset of \mathbb{R}^{n} is compact iff it is closed and bounded.

Theorem (Cantor Intersection Theorem)

Let $\left\{F_{k}\right\}$ be a sequence of nested $\left(F_{k+1} \subseteq F_{k}\right)$, closed, nonempty sets for $k \in \mathbb{N}$ with F_{1} being bounded. Then

$$
F=\bigcap_{k=1}^{n} F_{k}
$$

is closed and nonempty.

CIT

Proof. (Cantor Intersection Theorem).

I. If F is finite for some, then done.
II. Each F_{n} is infinite. Define $S=\bigcap_{k=1}^{\infty} F_{k}$.

1. S is closed.
2. 2.a Define the sequence $A=\left\{a_{k}\right\}$ by choosing distinct points $a_{k} \in F_{k}$ for each k.

Uses: F_{k} 's are infinite.
2.b Since F_{1} is bounded, the sequence forms a bounded, infinite set.
2.c Therefore A has an accumulation pt a.

Bolzano-Weierstrass!
2.d Let $r>0$ and set $B=B^{\prime}(a ; r)$. Since a is an acc pt of A, then B contains ∞ many pts of A. As the F_{k} 's are nested, B also must contain ∞ many pts of F_{k}. Whence a is an acc pt of F_{k}.
2.e F_{k} is closed, so $a \in F_{k}$.
2.f The F_{k} are nested, so $a \in \bigcap_{k} F_{k}$; i.e., the intersection is nonempty.

Sample Intersections

Examples (CIT)

1. Define: $F_{0}=[0,1] ; F_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]=F_{0}-\left(\frac{1}{3}, \frac{2}{3}\right)$;
$F_{2}=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right] ; \& c$. Hence

$$
F_{n}=\bigcup_{k=0}^{\left\lfloor 3^{n} / 2\right\rfloor}\left[\frac{2 k}{3^{n}}, \frac{2 k+1}{3^{n}}\right]_{J(k, n)}
$$

Let $\mathcal{C}=\bigcap_{n} F_{n}$. Whence CIT $\Longrightarrow \mathcal{C}$ is nonempty and closed.
2. Let $H_{n}=[n, \infty)$. Then H_{n} is a sequence of nested, closed sets. But $\bigcap_{n} H_{n}=$?
3. Set $J_{n}=\left(-\frac{n+1}{n^{2}}, \frac{n+1}{n^{2}}\right)$. Then J_{n} is a sequence of bounded, nested sets.
But $\bigcap_{n} J_{n}=$?

Disconnection

Connected and Separated Sets

Separated: Two sets A and B are separated iff $A \cap \bar{B}=\emptyset=\bar{A} \cap B$.
Connected: A set S is connected iff S is not the union of 2 nonempty, separated sets.
Arcwise conn: Any two points in S are conn by a path inside S.
Disconnected: A set is disconnected iff S is not connected.
Region: A region is a connected set that may contain boundary points (may be neither open or closed).

Proposition

1. Disjoint sets are separated if neither contains acc pts of the other.
2. Arcwise connected sets are connected
3. A nonempty, open, connected set is arcwise connected.

Interlude

Example (Unit Balls in \mathbb{R}^{2})

$|x|+|y|=1$

$\sqrt{x^{2}+y^{2}}=1$

$\max (|x|,|y|)=1$

Proposition

The open sets are the same under each of the metrics above.

Limits and Continuity

Definition (Limit)

- Let $f: D \rightarrow \mathbb{R}$, and let $(a, b) \in D^{\prime} \subseteq \mathbb{R}^{2}$. Then

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

iff $[\forall \varepsilon>0][\exists \delta>0][\forall(x, y) \in D]$, if $\|(x, y)-(a, b)\|<\delta$, then $\mid f(x, y)-L) \mid<\varepsilon$.

- Let $f: D \rightarrow \mathbb{R}$, and let $\vec{a} \in D^{\prime} \subseteq \mathbb{R}^{n}$. Then

$$
\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})=L
$$

iff $[\forall \varepsilon>0][\exists \delta>0][\forall \vec{x} \in D]$, if $\|\vec{x}-\vec{a}\|<\delta$, then $|f(\vec{x})-L|<\varepsilon$.

- Let $f: D \rightarrow \mathbb{R}$, and let $\vec{a} \in D^{\prime} \subseteq \mathbb{R}^{n}$. Then

$$
\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})=L
$$

iff $[\forall \varepsilon>0][\exists \delta>0], f\left(D \cap B^{\prime}(\vec{a} ; \delta)\right) \subseteq B(L ; \varepsilon)$.

Limiting Examples

Example (Good Function! Biscuit!)

Let $f(x, y)=x \sin (1 / y)+y \sin (1 / x)$. Then

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0
$$

Proof. Let $\delta(\varepsilon)=\varepsilon / 2$. And

$$
|f(x, y)| \leq|x|+|y|
$$

Example (Bad Function! No biscuit!)

Let $g(x, y)=\arctan (y / x)$. Then

$$
\lim _{(x, y) \rightarrow(0,0)} g(x, y) \text { D.N.E. }
$$

Proof. Observe that $\lim _{t \rightarrow 0} g(t, t)=\pi / 4$ and $\lim _{t \rightarrow 0} g(-t, t)=-\pi / 4$.

Algebra of Limits

Theorem (The Algebra of Limits)

Let $f, g: D \rightarrow \mathbb{R}$ and $\vec{a} \in D^{\prime}$. Suppose $\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})=L_{f}$ and $\lim _{\vec{x} \rightarrow \vec{a}} g(\vec{x})=L_{g}$. Then

1. $\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x}) \pm g(\vec{x})=L_{f} \pm L_{g}$
2. $\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x}) \cdot g(\vec{x})=L_{f} \cdot L_{g}$
3. $\lim _{\vec{x} \rightarrow \vec{a}} \frac{f(\vec{x})}{g(\vec{x})}=\frac{L_{f}}{L_{g}}$ as long as $L_{g} \neq 0$
4. $\lim _{\vec{x} \rightarrow \vec{a}}|f(\vec{x})|=\left|L_{f}\right|$
5. if $f(\vec{x}) \underset{(\leq)}{\leq} g(\vec{x})$ on some $B^{\prime}(\vec{a} ; r)$, then $L_{f} \leq L_{g}$

Continuity

Definition (Continuity)

Let $f: D \rightarrow \mathbb{R}$, and $(a, b) \in D \subseteq \mathbb{R}^{2}$. Then f is continuous at (a, b) iff

- $[\forall \varepsilon>0][\exists \delta>0][\forall(x, y) \in D]$, if $\|(x, y)-(a, b)\|<\delta$, then $\mid f(x, y)-f(a, b)) \mid<\varepsilon$.

Let $f: D \rightarrow \mathbb{R}$, and let $\vec{a} \in D \subseteq \mathbb{R}^{n}$. Then f is continuous at \vec{a} iff

- $[\forall \varepsilon>0][\exists \delta>0][\forall \vec{x} \in D]$, if $\|\vec{x}-\vec{a}\|<\delta$, then $|f(\vec{x})-f(\vec{a})|<\varepsilon$.
- $[\forall \varepsilon>0][\exists \delta>0] f(D \cap B(\vec{a} ; \delta)) \subseteq B(f(\vec{a}) ; \varepsilon)$.
- $[\forall O \subseteq \mathbb{R}$, open set $] f^{-1}(O) \subseteq \mathbb{R}^{n}$ is an open set.

Proposition

f is continuous at \vec{a} iff $\left[\forall\left\{\vec{a}_{n}\right\}\right]$ if $\vec{a}_{n} \rightarrow \vec{a}$, then $f\left(\vec{a}_{n}\right) \rightarrow f(\vec{a})$

Algebra of Continuity

Theorem (The Algebra of Continuity)

Let $f, g: D \rightarrow \mathbb{R}$ be continuous at $\vec{a} \in D$. Then

1. $f \pm g$ is continuous at \vec{a}
2. $f \cdot g$ is continuous at \vec{a}
3. f / g is continuous at \vec{a} as long as $g(\vec{a}) \neq 0$
4. $|f|$ is continuous at \vec{a}

Proof.

2. $\left(D \subseteq \mathbb{R}^{2}\right)$ Let $\vec{a}_{n} \rightarrow \vec{a}$. Since $(f g)\left(\vec{a}_{n}\right)=f\left(\vec{a}_{n}\right) g\left(\vec{a}_{n}\right)$, and $f \& g$ are continuous at \vec{a}, we have $f\left(\vec{a}_{n}\right) g\left(\vec{a}_{n}\right) \rightarrow f(\vec{a}) g(\vec{a})=(f g)(\vec{a})$. Thus $(f g)\left(\vec{a}_{n}\right) \rightarrow(f g)(\vec{a})$ for any sequence $\vec{a}_{n} \rightarrow \vec{a}$; hence, $f g$ is continuous at \vec{a}.
(Note: Thm 10.2.9 has problems: g \& f can't be composed as range $(f) \subset \mathbb{R}^{1}$, but $\operatorname{dom}(g) \subset \mathbb{R}^{2}$. So range $(f) \notin \operatorname{dom}(g)$.

Continuously Reverted

Proposition

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous iff

- the preimage of any open set (in \mathbb{R}^{1}) is open (in \mathbb{R}^{n}).
- the preimage of any closed set (in \mathbb{R}^{1}) is closed (in \mathbb{R}^{n}).

Proof.

(\Rightarrow) Assume f is cont and S is open in \mathbb{R}^{1}.
Let $\vec{a} \in f^{-1}(S)$; i.e. $f(\vec{a}) \in S$. For some $r>0$, then $B(f(a) ; r) \subseteq S$.
Whence there is a $\delta>0$, s.t. $f(B(\vec{a} ; \delta)) \subseteq B(f(a) ; r) \subseteq S$.
Hence $B(\vec{a} ; \delta) \subseteq f^{-1}(S)$.
(\Leftarrow) Assume $f^{-1}(S)$ is open whenever S is open.
Let $\vec{a} \in f^{-1}(S)$ and $\varepsilon>0$. Thence $f^{-1}(B(f(\vec{a} ; \varepsilon))$ is open.
Thus there is a $\delta>0$ s.t. $B(\vec{a} ; \delta) \subseteq f^{-1}(B(f(\vec{a} ; \varepsilon))$.
Apply f to have $f(B(\vec{a} ; \delta)) \subseteq B(f(\vec{a} ; \varepsilon))$.

Continuously Pictured

Preimage

Let $f(x, y)=4 \sin \left(x^{2}+y^{2}\right) e^{\left(-\left(x^{2}+y^{2}\right) / 2\right)}$

$$
\left.S=\left(\frac{1}{2}, 1\right) \Longrightarrow f^{-1}(S)=\{0.37<\|\vec{x}\|<0.54\} \bigcup\{1.50<\| \vec{x}) \|<1.78\right\}
$$

Uniform

Definition (Uniform Continuity)

A function $f: D \rightarrow \mathbb{R}$ is uniformly continuous on D iff for any $\varepsilon>0$ there is a $\delta>0$ s.t. for all $\vec{x}_{1}, \vec{x}_{2} \in D$, if $\left\|\vec{x}_{1}-\vec{x}_{2}\right\|<\delta$, then $\left|f\left(\vec{x}_{1}\right)-f\left(\vec{x}_{2}\right)\right|<\varepsilon$.

Theorem

If f is continuous on D, and D is closed \& bounded (compact), then

1. f is bounded,
2. f attains extreme values (max and min),
3. f is uniformly continuous on D.

Proof (Homework).

1. Hint: Assume not, then look at $f^{-1}\left(a_{n}\right)$ where $a_{n} \rightarrow \infty$.
2. Bolzano-Weierstrass in action.
3. Hint: Assume not. Create sequences \vec{x}_{n}, \vec{y}_{n} that converge to \vec{a}, but have $\left|f\left(\vec{x}_{n}\right)-f\left(\vec{y}_{n}\right)\right|>\varepsilon$. Cont gives a contradiction.

Connecting to Rudolph Otto

Theorem

Let $f: D \rightarrow \mathbb{R}$ be continuous and let S be a connected subset of D. Then $f(S)$ is connected. (A connected set in \mathbb{R} is an interval.)

Proof.

Suppose $f(S)=A \cup B$ with A \& B nonempty, separated sets in \mathbb{R}.
Define $G=S \cap f^{-1}(A)$ and $H=S \cap f^{-1}(B)$.

1. $S=G \cup H$ since $f: S \underset{\text { onto }}{\longrightarrow} f(S)$.
2. Let $\vec{y} \in A$. $(A \neq \emptyset$.) $\exists \vec{x} \in S$ s.t. $f(\vec{x})=\vec{y}$. Thus $\vec{x} \in G \Longrightarrow G \neq \emptyset$. Similarly, $H \neq \emptyset$.
3. Let $\vec{p} \in \bar{G} \cap H$. If $\vec{p} \in G$, then $\vec{p} \in G \cap H$. Then $\vec{p} \in f^{-1}(A \cap B)$; i.e., $f(\vec{p}) \in A \cap B=\emptyset$. Thus $\vec{p} \notin G$, whence $\vec{p} \in G^{\prime}$ and $f(\vec{p}) \in B$. Since $A \cap B=\emptyset$ and $\vec{p} \in B, \exists \varepsilon>0$ s.t. $B(f(\vec{p}) ; \varepsilon) \cap A=\emptyset$. Since f is cont, $\exists \delta>0$ s.t. $f(B(\vec{p} ; \delta)) \subset B(f(\vec{p}) ; \varepsilon)$. Then $B(\vec{p} ; \delta) \cap G$ is empty contrary to $\vec{p} \in G^{\prime}$. Hence $\bar{G} \cap H=\emptyset$. Similarly $G \cap \bar{H}=\emptyset$.
4. Whereupon S is separated by G and H. oops $\rightarrow \leftarrow$

Fun with Functions

Problem (Functions)

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function. Let A and B be subsets of the domain and range of f, respectively. Then

$$
\begin{aligned}
f(A) & =\{y \in \mathbb{R} \mid f(a)=y \text { for some } a \in A\} \subseteq \operatorname{range}(f) \\
f^{-1}(B) & =\left\{x \in \mathbb{R}^{n} \mid f(x)=b \text { for some } b \in B\right\} \subseteq \operatorname{dom}(f)
\end{aligned}
$$

Give an example justifying your answer.

1. \mathbf{T} or $\mathbf{F}: A \subseteq f^{-1}(f(A))$
2. \mathbf{T} or $\mathbf{F}: B \subseteq f\left(f^{-1}(B)\right)$
3. \mathbf{T} or $\mathbf{F}: A=f^{-1}(f(A))$
4. \mathbf{T} or $\mathbf{F}: B=f\left(f^{-1}(B)\right)$
5. \mathbf{T} or $\mathbf{F}: A \supseteq f^{-1}(f(A))$ or $f^{-1}(f(A)) \subseteq A$
6. T or $\mathbf{F}: B \supseteq f\left(f^{-1}(B)\right)$ or $f\left(f^{-1}(B)\right) \subseteq B$

Rudolph Otto S von L

Definition (Lipschitz Condition)

If there is a constant L s.t.

$$
\left|f\left(\vec{x}_{1}\right)-f\left(\vec{x}_{2}\right)\right| \leq L\left\|\vec{x}_{1}-\vec{x}_{1}\right\|
$$

for all $f \vec{x}_{1}, \vec{x}_{2} \in D$, then f satisfies a Lipschitz condition on D (also called a "Lipschitz 1" condition).

Proposition

A function that is Lipschitz on D is uniformly continuous on D.

Proof.

Suppose f is Lipschitz with constant L.
Let $\varepsilon>0$. Choose $0<\delta<\varepsilon / L$. For any vectors \vec{x}_{1} and \vec{x}_{2} in $\operatorname{dom}(f)$ with $\left\|\vec{x}_{1}-\vec{x}_{2}\right\|<\delta$, we have

$$
\left|f\left(\vec{x}_{1}\right)-f\left(\vec{x}_{2}\right)\right| \leq L\left\|\vec{x}_{1}-\vec{x}_{2}\right\|<L \delta<\varepsilon
$$

Exercise

Problem (\#14, pg 447)

Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(r, \theta)= \begin{cases}\frac{1}{2} \sin (2 \theta) & r \neq 0 \\ 0 & r=0\end{cases}
$$

1. Is f continuous in polar coordinates?

Let $\theta= \pm \pi / 4$, resp., and $r \rightarrow 0$. Then $\lim _{(r, \pi / 4) \rightarrow \overrightarrow{0}} f(r, \theta)=1 / 2$, but $\lim _{(r,-\pi / 4) \rightarrow \overrightarrow{0}} f(r, \theta)=-1 / 2$. Thus, f is not continuous at $\overrightarrow{0}$ (polar).
2. Write f in rectangular coordinates.

$$
\frac{1}{2} \sin (2 \theta)=\cos (\theta) \sin (\theta)=\frac{x}{\sqrt{x^{2}+y^{2}}} \cdot \frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{x y}{x^{2}+y^{2}}
$$

3. Is f in rectangular coordinates continuous?

Let $(x, y) \rightarrow \overrightarrow{0}$ as (t, t) and as $(t,-t)$. Then $f \rightarrow \pm 1 / 2$ as $t \rightarrow 0$. Hence f is not continuous at $\overrightarrow{0}$.

Exercise's Graph

$$
f(r, \theta)=\left\{\begin{array}{ll}
\frac{1}{2} \sin (2 \theta) & r \neq 0 \\
0 & r=0
\end{array} \Longleftrightarrow f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & x^{2}+y^{2} \neq 0 \\
0 & x^{2}+y^{2}=0\end{cases}\right.
$$

