Vector Calculus Functions of Two Variables Multuple ntegration Intro to Eegesgue Measure

Define f:R? — R by
e—l/m2y

90(-'17,3/) — 6—2/332 + y2
0 z=0

1. LetC be an arbitrary curve y = cx™'™ form,n € N with n: odd.
Find

: m/n
il_r% o(z,cx™™)

2. Define the sequence @, = (%, e_"2>. Find

lim d,, and lim ¢(d,)

n—oo n— oo

3. Is ¢ continuous at 0?
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Let D be an open set in R?, (a,b) € D, and f:D — R. Then
f(a+hab) _f(aab)

of .
s o) = Jim

h
8f T f(a'ab+h)_f(avb)
gy (@) = lim h

when the limits are finite.

Let f(z,y) = (@ —4") ong £(0) = 0. Then

$2+y2
.. f(h,0)—0 _
and —
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o o
fle,y)=4—32"—34° and §L(2,1)& §L(2,1)
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More Partial Derivatives

1. h(z,y) =2*/,/y. Then
hy(z,y) =2xy~
hy(z,y) = —52%y~

1/2

3/2

2. g(z,y) = — cos(z + y?). Then
9o(@,y) = sin(z + y*)
gy(@,y) = 2ysin(z +y°)

3. f(z,y) = x?sin(y) — ze~*¥. Then
fa:(x, y) =2 Sin(y) + (x/y — 1)6_333/
fylz,y) = 2 (cos(y) + e—my)

v
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Deeper Partial Derivatives

Theorem (Clairaut’s® Theorem (1743))

Let D c R? be open and f:D — R. If 22£ and 221 are continuous on D,

Ox 0y Jyox
8%f _ 9%f
then 5205 = gaz O D.

Proof.
Let (a,b) € D. Set
g(h,k) = f(a+ h,b+k)— f(a,b+ k) — f(a+ h,b) + f(a,b)
p(z,y) = flx+h,y) — f(z,y) = Acf
q(z,y) = f(z,y + k) — f(z,y) = Ayf
Then
g(h,k) = pla,b+ k) —p(a,b) = Ayp = AyAs f
g(h, k) = qla+h,b) — q(a,b) = Arqg = Az Ay f

3 Presented his first paper at age 13; only one of his 19 siblings to reach adulthood. " ***
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Deeper Partial Derivatives, Il

Proof (cont).

Apply the MVT to A,p and A,q above to have (for some 6, € (0,1))
g(h, k) =kpyla,b+61k) =k - [f,(a+ h,b+ 0:1k) — f,(a,b+ 01k)]
g(h,k) =hq.(a+ 62h,b)) =h-|[fe(a+02h,b+ k) — fo(a+ O2h,b)]

Apply the MVT to A, f, and A, f,, above to have (for some 6, € (0, 1)).
g(h,k) = hk fyz(a+ 03h,b+ 01k)
g(h, k) = kh fzy(a + 02k, b+ 04k)

Whence
fyz(a+03h,b+ 61k) = fry(a+ O02h,b+ 04k)

Let h, k — 0. Since f,, and f,, are continuous, then

fym(aa b) = fxy(aab) n

o
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Deeper Samples

1. g(x,y) = —cos(z + y?). Then
9:(7,y) =sin(z +y?) = guy(z,y) = 2y cos(x + y?)

gy(z,y) =2ysin(z + y*) = gyu(z,y) = 2y cos(z + y?)

2 .2
2, f(x,y)z%yzy). Then (Maple)
_Jxr x#0
fy(x’o){o z=0
_ )y y#0

Whence f,,(0,0) = —1, but f,,(0,0) = +1.

Vv
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Operators and Exact Equations

Definition (Operators and Annihilators)
Let C1(S) = {continuously differentiable fcns on S}.

e An operatoron S is a fcn ®:C1(S) — C1(9).
e An annihilator is an operator combination that maps a fcn to 0.

v

Definition (Exact Differential Equations)

A differential equation M dx + N dy = 0 is exact iff there is a function
f(x,y) st. M =0f/0x and N = 0f/0y.

e D; = - is an operator on C'(R").
e L = (D — 2)? annihilates the function f,(z) = axe?®.

e The DE (2zy + y?)dx + (2 + 2zy)dy = 0 is exact from
flz,y) = 2%y + x 9>

o
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Partial Antiderivatives and Exact Equations

Solve the DE: 2zy dx + (22 — 1) dy = 0
Solution: Set M = 2zy and N = 22 — 1.
1. Since f, = M = 2zy, then f(z,y) = [2zydz = 2%y + ¢(y).

partial antiderivative
2. Now f, = N = (22 — 1), s0

a% [2*y+ o(y)] = 2° — 1.

Since £ [2%y + ¢(y)] = 2® + £ 6(y), we have ¢/ (y) = —1.
Whence ¢(y) = —y
Putting the pieces together, f(x,y) is given by
y—y=c

where c is a constant of integration.

Try: (z+y/(2* +9?)) dz + (y — =/(2* + y?)) dy = 0.
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Picture Time Again

Fe9) = (e +4?) + arctan (£
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Tangent Plane

Consider. . .

In R?
e Slope of the tangent line at x = a is f'(a)
e Tangentlineis y = f(a) + f'(a)(z — a)

In R3
e Tangent vector in the x direction at @ is T, = (1,0, f.(a))
e Tangent vector in the y direction at @ is T, = (0, 1, f,(a))
¢ A plane containing @ and the tangent vectors is

(Ty xT,) - (£ — @) =0

or (with @ = (z¢,y0) and mz = (f.(a@), ,(@)))

z = f(@) + f(@)(x — zo) + fu(@)(y — yo)
= £(@) + mg - (¥ — @)

v
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Functions of Two Variables

Differentiation

Definition (Derivative)

Let f be defined on the open set D C R2. Then f is differentiable at ¥, € D
iff there is a vector mi s.t.

F(@o + R) = f(Zo) + - h+ |||

Equivalently: iff there is a vector m s.t. for T'(Z) = f(&o) + m - (¥ — Zo), then

Definition (Gradient)
The gradient (vector) of f, written as V f of grad(f) is

e

I

§le

Note: V is a vector differential operator (generalizing D;): V = <

).

3 T(z,y) = f(x0,0) + fo(®0,0)(x — z0) + fy(z0,90)(y — yo)

Functions of Two Variables

Derivative

Nota Bene
f is differentiable* ata —  5L(a) and 3 (a) both exist

5L(@) and §L(a) both exist =~ fis differentiable at @

MAT 5620: 69

Theorem (The “Continuity of Partials Suffices” Thm)
If

1. f. and f, exist on B(a;e) for some e > 0, and

2. f and f, are continuous at a,
then

1. f is differentiable at a, and

2. f(7) = fa) + V[f(a)- (T —a)+ (e1,2) - (T — a)

wheree,eo - 0asx —a,,y —a, — 0, resp.

4 Careful: Gradientis V = (4%, £%); Total derivative f' (o) is V f (o)
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Functions of Two Variables

Derivative

Proof (The “Continuity of Partials Suffices” Thm).

Leta = <$o,yo>.

NTS: Af(@) = Vf(@)-(Az, Ay) + £ (Ax, Ay) with &0 as Az, Ay — 0.
1. Fixy. MVT = 321 € B(xo;r) st f(z,y) — f(x0,y) = fo(z1,y)(x — 20)

2. fz€C(D)= fz(x1,y)=fz(x0,y0) + ez Where e, -0 as (z,y) — (xo, Yo)

So f(z,y) — f(zo,y) = [fe(xo,y0) + 2] (x — x0) Where e, — 0.

3. Fix z. MVT = 3y € B(yo;7) sit. f(x,y) — f(z, y0) = fy(2,91)(y — yo)

4. f,€C(D) = fy(x,y1)=fy(zo,y0) + &, Where e, =0 as (z,y) — (zo, yo)

So f(z,y) — f(z,y0) = [fy(x0,y0) + 4] (y — yo) where e, — 0.

Whence

f(xay) - f(l‘o,yo) = [f(may) - f(xoay)] + [f(iEO)y) - f(m()?yo)]

= [fz(z0,Y0) + €2] (x — T0) + [fy (w0, Y0) + y] (¥ — o)

MAT 5620: 71

O
Functions of Two Variables
Derivatives and Continuity
Theorem (D = C Thm)
If f is differentiable at @, then f is continuous at a.
Proof.
Since f is differentiable at a,
f(@+h) - £(@) = Vf(@)-h+ €A
where £— 0 as i — 0. Thus
f@+h) - £@)| < |Vr@- k| + 1A
<|IVF @I N2+ €A = (V@ + €] 17
Whence lim f(Z) = f(a). O

T—a
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Functions of Two Variables

Algebra of Derivatives

Proposition (Algebra of Derivatives)
Let f and g be differentiable functions at a. Then

e [ + g is differentiable at d e V(f+g)=(Vf)£(Vyg)
e f - g is differentiable at d e V(f-9)=(Vf)g+ f(Vg)
e [ - g is differentiable at d e V(f+g) = (Vf)g;f(Vg)
as long as g(a@) # 0 wheng(@) #0 9
Proof.
Homework. Pg 462, #14. O

See: §10.2. Problem 4, pg461 (Maple time.)
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Functions of Two Variables

Directional Derivatives

Thinking Out Loud. . .

1. e f, is the derivative in the (1, 0) direction
e f, is the derivative in the (0, 1) direction

2. o (zo+h,yo) — (w0, yo) equiv to (zo,yo) + h(1,0) — (z0,yo)
® (x0,y0 + k) — (20, yo) €quiv to (zo,yo) + k(0,1) —> (xo, Yo)
k—0 k—0

3. With an arbitrary direction « (unit vector): Z+ hu — Zo
_>

Definition (Directional Derivative)

Let f be defined on an open set D and @ € D. Then the directional derivative
of f in the direction of i, a unit vector, is given, if the limit is finite, by
o fl@+ ha) — f(a@)
Duf(a) - }lz,li}}) h

o e o By i) — )

l11—>0 h
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Directional Derivative’s Properties

Theorem

If f is differentiable at d, then Dy f (&) exists for any direction u. And
Dgf(a)=Vf(a)-a

Proof.

Simple computation from: f(d + ht) = f(a) + V f(a) - (h@) + €||hd]] O

Corollary (“Method of Steepest Ascent/Descent”)

Let f be differentiable at a. Then
1. The max rate of change of f ata is |V f(d)|| in the direction of V f (a).
2. The min rate of change of f ata is —||V f(ad)|| in the direction of —V f (&)

v

Proof.
Simple computation from: Dy (@) = V f(@) - @ = ||V f(@)]| ||@]| cos(6) O
y
Visit Maple. MAT 5620: 75
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Directional Derivative’s Weird Properties

NN~ s
LANS e

R NN
N N e Sacr s ST

~—/)\ NN\
—— /AN N S S e e

Gradient field & contour plot

NANNANNNNNN

f(z,y)

- $6+y2

f is not continuous at 0, but has directional derivatives in all directions at 0!
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Functions of Two Variables

The Chain Rule

Theorem (The Chain Rule)

If z(t) and y(t) are differentiable at ty, and f is differentiable at
a = (z(to),y(to)), then f composed with x and y is differentiable at t,

with
of du . G of dy

/@), y() = > — By dt

Proof.

Let z = f(z,y) and At = t; — to. Then Az = z(t1) — x(to) and
Ay = y(t1) — y(to). Since f is differentiable, we have

Az = f(z + Az,y + Ay) — f(z,y) = foDz + fAy + 1Az + e2Ay
So

Az Ax Ay
fcc fy_+€1E+E2At
Since At - 0 — Ax,Ay—>O, then e1,eo — 0 with At. O

Functions of Two Variables

The Chain Rule Extended

Corollary (MCR Corollary)

If x(t,s) and y(t, s) are differentiable at (ty, s¢), and z = f(x,y) is
differentiable at a = (x(to, so), y(to, So)), then f composed with x and
y Is differentiable at (ty, so) with

dz _0f 0z 0f Oy dz _ 0f 0z  Of Oy
dt — oz ot ey dy Ot and ds Oz Os ey dy Os
Two Views
@ @ of af
[de de] _Tor 1) |G 0s /\
dt ds| |0z 9y| |oy oy
ot 9s z 2 \o
=Vf(z,y)- 0=,v) af _ af { \ af {
8(t’ S) o oot ay ot

of o . of o _of

= Vf(il?,y) ) J(w,y) (t, 5) 9z s 8y~ ds  0s
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Functions of Two Variables

The Mean Value Theorem

Theorem (MVT for Two)

Suppose f is differentiable on the open D containing the segment
L(p,q). Then thereisacon L s.t.

@)= f(q)=Vi@E) F-1q)

Proof.
1. Set (z0,y0) = qand (h, k) =p—¢
2. Setg(t) = f(xo + ht,yo + kt) for t€[0,1] (g parametrizes f on L)
3. Then g(1) — g(0) = ¢'(#)(1 — 0) for some 6 € (0, 1); i.e.
f) = f(@) =4'(6)
4. The MCR implies

9O =1fo G+ @ =l o) (G H) -

Functions of Two Variables

Taylor's Theorem

Theorem (MV Taylor’'s Theorem)
Suppose f has partial (n + 1)st derivatives (of all ‘mixtures’) existing
on B(d;r). Then for ¥ = d + (h, k) in B(a;r),

@+ (k) =@+ (b + k) @)

1/ 0 o\?

1 0 oN" ...

where

1 d Nt

for some 6 € (0,1).
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Taylor’'s Theorem Eg

Find the Taylor polynomial of order 2 at @ = (1, 1) and remainder for
f(z,y) = 2?yand & = (1,1) + (h, k).

1. f(@) = f(1,1) + [fo(1,1) - h + fy(1,1) - k]
+ 2 [foa(1,1) - B2+ 25 (1,1) - Rk + fyy(1,1) - k2]
+ 31 [foaa (1 + 0h, 14 0k) - h® 4+ 3fpy (1 + 0h, 1 + k) - K2k

+ 3 fuyy(1 + 0h, 1+ 0k) - hk? + fip (1 + 0h, 1 + 0K) - k°]
where 6 € (0,1)

2. fA+h,1+k)=1+[2h+k]+ 1 [2h® + 4hk + 0k?] + Ry
and Ry = % [0h3 + 6h%k + 0hk? + 0k®] = h?k with 6 € (0,1)
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Multiple Integration

Definition (The Double Sums)

Suppose f is bounded on R = [a, b] X [c,d]. Let P = P, x P> be a partition of
Rgivenby P, = {a = xo,...,z, = b} and P> = {c = yo,...,ym = d} with
Rij = [ri—1,yj—1] X [x4,y,]. Then the area of R;; is A;; = Ax; - Ay,

e Set ||P|| = max{Az;, Ay;}.

o Defi
S My(f) =sup f(z,y) and mi(f) = inf f(z,)

ij ©J
e Then define

UP, f) =) > My AnAy; =Y Mi; Ay
i i

=33 iy Avily; = 3 misAs
i g 2,7
=D° 3 flesds) Amiddy; = 3 f(es, di) A
X : i,7

T
where (c;,d;) € R;; is arbitrary.

v
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