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Challenge Problem

Problem (Hmm.)
Define f :R2 ! R by

'(x, y) =

8
><

>:

e�1/x2

y

e�2/x2
+ y2

x 6= 0

0 x = 0

1. Let C be an arbitrary curve y = c xm/n for m, n 2 N with n: odd.
Find

lim

x!0
'(x, c xm/n

)

2. Define the sequence ~a
n

=

⇣
1
n

, e�n

2
⌘

. Find

lim

n!1
~a
n

and lim

n!1
'(~a

n

)

3. Is ' continuous at ~0?
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The Challenge Problem Plot Thickens

'(x, y) =

8><>:
e�1/x2

y

e�2/x2
+ y2

x 6= 0

0 x = 0



MAT 5620: 59

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Partial Derivatives

Definition (Partial Derivatives)
Let D be an open set in R2, (a, b) 2 D, and f :D ! R. Then

@f
@x

(a, b) = lim

h!0

f(a+ h, b)� f(a, b)
h

,

@f
@y

(a, b) = lim

h!0

f(a, b+ h)� f(a, b)
h

when the limits are finite.

Example (Woof!)

Let f(x, y) = xy(x2 � y2
)

x2
+ y2

and f(~0) = 0. Then

f
x

(0, 0) = lim

h!0

f(h, 0)� 0

h
= 0

and
f
y

(0, 0) = lim

h!0

f(0, h)� 0

h
= 0
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Picture Time

f(x, y) = 4 � 1
2 x2 � 1

3 y2 and @f

@y

(2, 1) & @f

@x

(2, 1)

Differentiation
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More Partial Derivatives

Examples
1. h(x, y) = x2/

p
y. Then

h
x

(x, y) = 2x y�1/2

h
y

(x, y) = � 1
2x2y�3/2

2. g(x, y) = � cos(x + y2
). Then

g
x

(x, y) = sin(x + y2
)

g
y

(x, y) = 2y sin(x + y2
)

3. f(x, y) = x2
sin(y) � xe�xy. Then

f
x

(x, y) = 2x sin(y) + (xy � 1)e�xy

f
y

(x, y) = x2
�
cos(y) + e�xy

�
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Deeper Partial Derivatives

Theorem (Clairaut’s3 Theorem (1743))
Let D ⇢ R2 be open and f :D ! R. If @

2
f

@x@y

and @

2
f

@y@x

are continuous on D,

then @

2
f

@x@y

=

@

2
f

@y@x

on D.

Proof.
Let (a, b) 2 D. Set

g(h, k) = f(a+ h, b+ k)� f(a, b+ k)� f(a+ h, b) + f(a, b)

p(x, y) = f(x+ h, y)� f(x, y) = �

x

f

q(x, y) = f(x, y + k)� f(x, y) = �

y

f

Then
g(h, k) = p(a, b+ k)� p(a, b) = �

y

p = �

y

�

x

f

g(h, k) = q(a+ h, b)� q(a, b) = �

x

q = �

x

�

y

f

3Presented his first paper at age 13; only one of his 19 siblings to reach adulthood.
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Deeper Partial Derivatives, II

Proof (cont).
Apply the MVT to �

y

p and �

x

q above to have (for some ✓
j

2 (0, 1))

g(h, k) = k p
y

(a, b + ✓1k) = k · [f
y

(a + h, b + ✓1k) � f
y

(a, b + ✓1k)]

g(h, k) = h q
x

(a + ✓2h, b)) = h · [f
x

(a + ✓2h, b + k) � f
x

(a + ✓2h, b)]

Apply the MVT to �

x

f
y

and �

y

f
x

above to have (for some ✓
k

2(0, 1)).

g(h, k) = hk f
yx

(a + ✓3h, b + ✓1k)

g(h, k) = kh f
xy

(a + ✓2h, b + ✓4k)

Whence
f
yx

(a + ✓3h, b + ✓1k) = f
xy

(a + ✓2h, b + ✓4k)

Let h, k ! 0. Since f
xy

and f
yx

are continuous, then

f
yx

(a, b) = f
xy

(a, b)
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Deeper Samples

Examples
1. g(x, y) = � cos(x + y2

). Then

g
x

(x, y) = sin(x + y2
) =) g

xy

(x, y) = 2y cos(x + y2
)

g
y

(x, y) = 2y sin(x + y2
) =) g

yx

(x, y) = 2y cos(x + y2
)

2. f(x, y) =

xy(x2 � y2
)

x2
+ y2

. Then (Maple)

f
y

(x, 0) =

(
x x 6= 0

0 x = 0

f
x

(0, y) =

(
�y y 6= 0

0 y = 0

Whence f
xy

(0, 0) = �1, but f
yx

(0, 0) = +1.
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Operators and Exact Equations

Definition (Operators and Annihilators)
Let C1

(S) = {continuously differentiable fcns on S}.
• An operator on S is a fcn � :C1

(S) ! C1
(S).

• An annihilator is an operator combination that maps a fcn to 0.

Definition (Exact Differential Equations)
A differential equation M dx + N dy = 0 is exact iff there is a function
f(x, y) s.t. M = @f/@x and N = @f/@y.

Examples
• D

j

=

@

@xj
is an operator on C1

(Rn

).

• L = (D � 2)

2 annihilates the function f
a

(x) = axe2x.
• The DE (2xy + y2

)dx + (x2
+ 2xy)dy = 0 is exact from

f(x, y) = x2y + x y2.
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Partial Antiderivatives and Exact Equations

Example
Solve the DE: 2xy dx + (x2 � 1) dy = 0

Solution: Set M = 2xy and N = x2 � 1.
1. Since f

x

= M = 2xy, then f(x, y) =

R
2xy dx = x2y + �(y)

partial antiderivative
.

2. Now f
y

= N = (x2 � 1), so
@

@y

⇥
x2y + �(y)

⇤
= x2 � 1.

Since @

@y

⇥
x2y + �(y)

⇤
= x2

+

d

dy

�(y), we have �0
(y) = �1.

Whence �(y) = �y

Putting the pieces together, f(x, y) is given by

x2y � y = c

where c is a constant of integration.

Try:
�
x + y/(x2

+ y2
)

�
dx +

�
y � x/(x2

+ y2
)

�
dy = 0.
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Picture Time Again

f(x, y) =

1

2

(x2
+ y2

) + arctan

✓
x

y

◆
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Tangent Plane

Consider. . .
In R2

• Slope of the tangent line at x = a is f 0
(a)

• Tangent line is y = f(a) + f 0
(a)(x � a)

In R3

• Tangent vector in the x direction at ~a is T
x

= h1, 0, f
x

(~a)i
• Tangent vector in the y direction at ~a is T

y

= h0, 1, f
y

(~a)i
• A plane containing ~a and the tangent vectors is

(T
x

⇥ T
y

) · (~x � ~a) = 0

or (with ~a = hx0, y0i and ~m
~a

= hf
x

(~a), f
y

(~a)i)
z = f(~a) + f

x

(~a)(x � x0) + f
y

(~a)(y � y0)

= f(~a) + ~m
~a

· (~x � ~a)
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Differentiation

Definition (Derivative)
Let f be defined on the open set D ✓ R2. Then f is differentiable at ~x0 2 D
iff there is a vector ~m s.t. Picture Time

f(~x0 +
~h) = f(~x0) + ~m · ~h+ "k~hk

Equivalently: iff there is a vector ~m s.t. for T (~x) = f(~x0) + ~m · (~x� ~x0), then

lim

~x!~x0

f(~x)� T (~x)
k~x� ~x0k = 0

Definition (Gradient)
The gradient (vector ) of f , written as rf of grad(f) is

rf(~x0) =

⌧
@f
@x

~x0,
@f
@y

~x0

�
Note: r is a vector differential operator (generalizing D

x

): r =

D
@

@x

, @

@y

E
.

3
T (x, y) = f(x0, y0) + f

x

(x0, y0)(x� x0) + f

y

(x0, y0)(y � y0)
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Derivative

Nota Bene
f is differentiable4 at ~a =) @f

@x

(~a) and @f

@y

(~a) both exist
@f

@x

(~a) and @f

@y

(~a) both exist 6=) f is differentiable at ~a

Theorem (The “Continuity of Partials Suffices” Thm)
If

1. f
x

and f
y

exist on B(~a; ") for some " > 0, and
2. f

x

and f
y

are continuous at ~a,
then

1. f is differentiable at ~a, and
2. f(~x) = f(~a) + rf(~a) · (~x � ~a) + h"1, "2i · (~x � ~a)

where "1, "2 ! 0 as x � a
x

, y � a
y

! 0, resp.

4 Careful: Gradient is r = h @

@x

,

@

@y

i; Total derivative f

0
(~x0) is rf(~x0)
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Derivative

Proof (The “Continuity of Partials Suffices” Thm).
Let ~a = hx0, y0i.
NTS: �f(~a) = rf(~a)·h�x,�yi+ ~"·h�x,�yi with ~"!~

0 as �x,�y ! 0.

1. Fix y. MVT ) 9x12B(x0; r) s.t. f(x, y)� f(x0, y) = f
x

(x1, y)(x� x0)

2. f
x

2C(D) ) f
x

(x1, y)=f
x

(x0, y0) + "
x

where "
x

!0 as (x, y)!(x0, y0)

So f(x, y)� f(x0, y) = [f
x

(x0, y0) + "
x

] (x� x0) where "
x

�!
x,y!x0,y0

0.

3. Fix x. MVT ) 9y12B(y0; r) s.t. f(x, y)� f(x, y0) = f
y

(x, y1)(y � y0)

4. f
y

2C(D) ) f
y

(x, y1)=f
y

(x0, y0) + "
y

where "
y

!0 as (x, y)!(x0, y0)

So f(x, y)� f(x, y0) = [f
y

(x0, y0) + "
y

] (y � y0) where "
y

�!
x,y!x0,y0

0.

Whence

f(x, y)� f(x0, y0) = [f(x, y)� f(x0, y)] + [f(x0, y)� f(x0, y0)]

= [f
x

(x0, y0) + "
x

] (x� x0) + [f
y

(x0, y0) + "
y

] (y � y0)
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Derivatives and Continuity

Theorem (D ) C Thm)
If f is differentiable at ~a, then f is continuous at ~a.

Proof.
Since f is differentiable at ~a,

f(~a +

~h) � f(~a) = rf(~a)· ~h + ~" k~hk

where ~" ! 0 as ~h ! 0. Thus
���f(~a +

~h) � f(~a)

��� 
���rf(~a) · ~h

��� + |~" | k~hk

 krf(~a)k k~hk + |~" | k~hk = (krf(~a)k + |~" |) k~hk

Whence lim

~x!~a

f(~x) = f(~a).
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Algebra of Derivatives

Proposition (Algebra of Derivatives)
Let f and g be differentiable functions at ~a. Then

• f ± g is differentiable at ~a

• f · g is differentiable at ~a

• f ÷ g is differentiable at ~a
as long as g(~a) 6= 0

• r(f ± g) = (rf) ± (rg)

• r(f · g) = (rf)g + f (rg)

• r(f÷g) =

(rf)g�f(rg)

g2when g(~a) 6= 0

Proof.
Homework. Pg 462, #14.

See: §10.2. Problem 4, pg461 (Maple time.)
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Directional Derivatives

Thinking Out Loud. . .
1. • f

x

is the derivative in the h1, 0i direction
• f

y

is the derivative in the h0, 1i direction

2. •
(x0 + h, y0) �!

h!0
(x0, y0) equiv to hx0, y0i+ hh1, 0i �!

h!0
hx0, y0i

•
(x0, y0 + k) �!

k!0
(x0, y0) equiv to hx0, y0i+ kh0, 1i �!

k!0
hx0, y0i

3. With an arbitrary direction ~u (unit vector): ~x+ h ~u �!
h!0

~x0

Definition (Directional Derivative)
Let f be defined on an open set D and ~a 2 D. Then the directional derivative
of f in the direction of ~u, a unit vector, is given, if the limit is finite, by

D
~u

f(~a) = lim

h!0

f(~a+ h ~u)� f(~a)
h

or
@f
@~u

(~a) = lim

h!0

f(x+ hu
x

, y + hu
y

)� f(x, y)
h
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Directional Derivative’s Properties

Theorem
If f is differentiable at ~a, then D

~u

f(~a) exists for any direction ~u. And

D
~u

f(~a) = rf(~a) · ~u

Proof.
Simple computation from: f(~a+ h~u) = f(~a) +rf(~a) · (h~u) + "kh~uk

Corollary (“Method of Steepest Ascent/Descent”)
Let f be differentiable at ~a. Then

1. The max rate of change of f at ~a is krf(~a)k in the direction of rf(~a).

2. The min rate of change of f at ~a is �krf(~a)k in the direction of �rf(~a).

Proof.
Simple computation from: D

~u

f(~a) = rf(~a) · ~u = krf(~a)k k~uk cos(✓)

Visit Maple.
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Directional Derivative’s Weird Properties

f(x, y) =

x2y

x6
+ y2

Gradient field & contour plot

f is not continuous at ~0, but has directional derivatives in all directions at ~0 !
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The Chain Rule

Theorem (The Chain Rule)
If x(t) and y(t) are differentiable at t0, and f is differentiable at
~a = (x(t0), y(t0)), then f composed with x and y is differentiable at t0
with

d

dt
f(x(t), y(t)) =

@f

@x

dx

dt
+

@f

@y

dy

dt

Proof.
Let z = f(x, y) and �t = t1 � t0. Then �x = x(t1) � x(t0) and
�y = y(t1) � y(t0). Since f is differentiable, we have

�z = f(x + �x, y + �y) � f(x, y) = f
x

�x + f
y

�y + "1�x + "2�y

So
�z

�t
= f

x

�x

�t
+ f

y

�y

�t
+ "1

�x

�t
+ "2

�y

�t

Since �t ! 0 =) �x, �y ! 0, then "1, "2 ! 0 with �t.
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The Chain Rule Extended

Corollary (MCR Corollary)
If x(t, s) and y(t, s) are differentiable at (t0, s0), and z = f(x, y) is
differentiable at ~a = (x(t0, s0), y(t0, s0)), then f composed with x and
y is differentiable at (t0, s0) with

dz

dt
=

@f

@x

@x

@t
+

@f

@y

@y

@t
and

dz

ds
=

@f

@x

@x

@s
+

@f

@y

@y

@s

Two Views

dz
dt

dz
ds

�
=


@f
@x

@f
@y

�
·

2664
@x
@t

@x
@s

@y
@t

@y
@s

3775
= rf(x, y) · @(x, y)

@(t, s)

= rf(x, y) · J(x,y)(t, s)

f(x, y)

x(t, s) y(t, s)

t s t s

@f

@x

@f

@y

@x

@t

@x

@s

@y

@s

@y

@t

@f

@x
⇥ @x

@t
@f

@x
⇥ @x

@s

@f

@y
⇥ @x

@s

@f

@y
⇥ @x

@t
+

+

@f

@t
=

� ⇥

�!
+

=

@f

@s
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The Mean Value Theorem

Theorem (MVT for Two)
Suppose f is differentiable on the open D containing the segment
L(~p, ~q). Then there is a ~c on L s.t.

f(~p ) � f(~q ) = rf(~c ) · (~p � ~q )

Proof.
1. Set (x0, y0) = ~q and (h, k) = ~p � ~q

2. Set g(t) = f(x0 + ht, y0 + kt) for t2 [0, 1] (g parametrizes f on L)
3. Then g(1) � g(0) = g0

(✓)(1 � 0) for some ✓ 2 (0, 1); i.e.

f(~p ) � f(~q ) = g0
(✓)

4. The MCR implies

g0
(t) = f

x

dx

dt

+ f
y

dy

dt

= hf
x

, f
y

i · hdx
dt

, dy

dt

i
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Taylor’s Theorem

Theorem (MV Taylor’s Theorem)
Suppose f has partial (n + 1)st derivatives (of all ‘mixtures’) existing
on B(~a; r). Then for ~x = ~a + (h, k) in B(~a; r),

f(~a + (h, k)) =f(~a) +

✓
h

@

@x
+ k

@

@y

◆
f(~a)

+

1

2!

✓
h

@

@x
+ k

@

@y

◆2

f(~a) + · · ·

+

1

n!

✓
h

@

@x
+ k

@

@y

◆
n

f(~a) + R
n

where

R
n

=

1

(n + 1)!

✓
h

@

@x
+ k

@

@y

◆
n+1

f(~a + ✓(h, k))

for some ✓ 2 (0, 1).
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Taylor’s Theorem Eg

Example (Second Order, Two Variable)
Find the Taylor polynomial of order 2 at ~a = h1, 1i and remainder for
f(x, y) = x2y and ~x = h1, 1i + hh, ki.

1. f(~x) = f(1, 1) + [f
x

(1, 1) · h + f
y

(1, 1) · k]

+

1
2

⇥
f
xx

(1, 1) · h2
+ 2f

xy

(1, 1) · hk + f
yy

(1, 1) · k2
⇤

+

1
3!

⇥
f
xxx

(1 + ✓h, 1 + ✓k) · h3
+ 3f

xxy

(1 + ✓h, 1 + ✓k) · h2k

+ 3f
xyy

(1 + ✓h, 1 + ✓k) · hk2
+ f

yyy

(1 + ✓h, 1 + ✓k) · k3
⇤

where ✓ 2 (0, 1)

2. f(1 + h, 1 + k) = 1 + [2h + k] +

1
2

⇥
2h2

+ 4hk + 0k2
⇤
+ R2

and R2 =

1
6

⇥
0h3

+ 6h2k + 0hk2
+ 0k3

⇤
= h2k with ✓ 2 (0, 1)

MAT 5620: 82

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Multiple Integration

Definition (The Double Sums)
Suppose f is bounded on R = [a, b]⇥ [c, d]. Let P = P1 ⇥ P2 be a partition of
R given by P1 = {a = x0, . . . , xn

= b} and P2 = {c = y0, . . . , ym = d} with
R

ij

= [x
i�1, yj�1]⇥ [x

i

, y
j

]. Then the area of R
ij

is A
ij

= �x
i

·�y
j

• Set kPk = max{�x
i

,�y
j

}.
• Define

M
ij

(f) = sup

Rij

f(x, y) and m
ij

(f) = inf

Rij

f(x, y)

• Then define

U(P, f) =
X
i

X
j

M
ij

�x
i

�y
j

=

X
i,j

M
ij

A
ij

L(P, f) =
X
i

X
j

m
ij

�x
i

�y
j

=

X
i,j

m
ij

A
ij

S(P, f) =
X
i

X
j

f(c
i

, d
j

)�x
i

�y
j

=

X
i,j

f(c
i

, d
j

)A
ij

where (c
i

, d
j

) 2 R
ij

is arbitrary.


