Challenge Problem

Problem (Hmm.)

Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\varphi(x, y)= \begin{cases}\frac{e^{-1 / x^{2}} y}{e^{-2 / x^{2}}+y^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

1. Let C be an arbitrary curve $y=c x^{m / n}$ for $m, n \in \mathbb{N}$ with n : odd. Find

$$
\lim _{x \rightarrow 0} \varphi\left(x, c x^{m / n}\right)
$$

2. Define the sequence $\vec{a}_{n}=\left(\frac{1}{n}, e^{-n^{2}}\right)$. Find

$$
\lim _{n \rightarrow \infty} \overrightarrow{a_{n}} \quad \text { and } \quad \lim _{n \rightarrow \infty} \varphi\left(\vec{a}_{n}\right)
$$

3. Is φ continuous at $\overrightarrow{0}$?

The Challenge Problem Plot Thickens

$$
\varphi(x, y)= \begin{cases}\frac{e^{-1 / x^{2}} y}{e^{-2 / x^{2}}+y^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Partial Derivatives

Definition (Partial Derivatives)

Let D be an open set in $\mathbb{R}^{2},(a, b) \in D$, and $f: D \rightarrow \mathbb{R}$. Then

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h} \\
& \frac{\partial f}{\partial y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}
\end{aligned}
$$

when the limits are finite.

Example (Woof!)

Let $f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$ and $f(\overrightarrow{0})=0$. Then

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-0}{h}=0
$$

and

$$
f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-0}{h}=0
$$

Picture Time

$$
f(x, y)=4-\frac{1}{2} x^{2}-\frac{1}{3} y^{2} \quad \text { and } \quad \frac{\partial f}{\partial y}(2,1) \& \frac{\partial f}{\partial x}(2,1)
$$

More Partial Derivatives

Examples

1. $h(x, y)=x^{2} / \sqrt{y}$. Then

$$
\begin{aligned}
& h_{x}(x, y)=2 x y^{-1 / 2} \\
& h_{y}(x, y)=-\frac{1}{2} x^{2} y^{-3 / 2}
\end{aligned}
$$

2. $g(x, y)=-\cos \left(x+y^{2}\right)$. Then

$$
\begin{aligned}
& g_{x}(x, y)=\sin \left(x+y^{2}\right) \\
& g_{y}(x, y)=2 y \sin \left(x+y^{2}\right)
\end{aligned}
$$

3. $f(x, y)=x^{2} \sin (y)-x e^{-x y}$. Then

$$
\begin{aligned}
& f_{x}(x, y)=2 x \sin (y)+(x y-1) e^{-x y} \\
& f_{y}(x, y)=x^{2}\left(\cos (y)+e^{-x y}\right)
\end{aligned}
$$

Deeper Partial Derivatives

Theorem (Clairaut's ${ }^{3}$ Theorem (1743))

Let $D \subset \mathbb{R}^{2}$ be open and $f: D \rightarrow \mathbb{R}$. If $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ are continuous on D, then $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$ on D.

Proof.

Let $(a, b) \in D$. Set

$$
\begin{aligned}
& g(h, k)=f(a+h, b+k)-f(a, b+k)-f(a+h, b)+f(a, b) \\
& p(x, y)=f(x+h, y)-f(x, y)=\Delta_{x} f \\
& q(x, y)=f(x, y+k)-f(x, y)=\Delta_{y} f
\end{aligned}
$$

Then

$$
\begin{aligned}
& g(h, k)=p(a, b+k)-p(a, b)=\Delta_{y} p=\Delta_{y} \Delta_{x} f \\
& g(h, k)=q(a+h, b)-q(a, b)=\Delta_{x} q=\Delta_{x} \Delta_{y} f
\end{aligned}
$$

Deeper Partial Derivatives, II

Proof (cont).

Apply the MVT to $\Delta_{y} p$ and $\Delta_{x} q$ above to have (for some $\theta_{j} \in(0,1)$)

$$
\begin{gathered}
g(h, k)=k p_{y}\left(a, b+\theta_{1} k\right)=k \cdot\left[f_{y}\left(a+h, b+\theta_{1} k\right)-f_{y}\left(a, b+\theta_{1} k\right)\right] \\
\left.g(h, k)=h q_{x}\left(a+\theta_{2} h, b\right)\right)=h \cdot\left[f_{x}\left(a+\theta_{2} h, b+k\right)-f_{x}\left(a+\theta_{2} h, b\right)\right]
\end{gathered}
$$

Apply the MVT to $\Delta_{x} f_{y}$ and $\Delta_{y} f_{x}$ above to have (for some $\theta_{k} \in(0,1)$).

$$
\begin{aligned}
& g(h, k)=h k f_{y x}\left(a+\theta_{3} h, b+\theta_{1} k\right) \\
& g(h, k)=k h f_{x y}\left(a+\theta_{2} h, b+\theta_{4} k\right)
\end{aligned}
$$

Whence

$$
f_{y x}\left(a+\theta_{3} h, b+\theta_{1} k\right)=f_{x y}\left(a+\theta_{2} h, b+\theta_{4} k\right)
$$

Let $h, k \rightarrow 0$. Since $f_{x y}$ and $f_{y x}$ are continuous, then

$$
f_{y x}(a, b)=f_{x y}(a, b)
$$

Deeper Samples

Examples

1. $g(x, y)=-\cos \left(x+y^{2}\right)$. Then

$$
\begin{aligned}
& g_{x}(x, y)=\sin \left(x+y^{2}\right) \quad \Longrightarrow g_{x y}(x, y)=2 y \cos \left(x+y^{2}\right) \\
& g_{y}(x, y)=2 y \sin \left(x+y^{2}\right) \Longrightarrow g_{y x}(x, y)=2 y \cos \left(x+y^{2}\right)
\end{aligned}
$$

2. $f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$. Then

$$
\begin{aligned}
f_{y}(x, 0) & = \begin{cases}x & x \neq 0 \\
0 & x=0\end{cases} \\
f_{x}(0, y) & = \begin{cases}-y & y \neq 0 \\
0 & y=0\end{cases}
\end{aligned}
$$

Whence $f_{x y}(0,0)=-1$, but $f_{y x}(0,0)=+1$.

Operators and Exact Equations

Definition (Operators and Annihilators)

Let $C^{1}(S)=\{$ continuously differentiable fcns on $S\}$.

- An operator on S is a fcn $\Phi: C^{1}(S) \rightarrow C^{1}(S)$.
- An annihilator is an operator combination that maps a fcn to 0 .

Definition (Exact Differential Equations)

A differential equation $M d x+N d y=0$ is exact iff there is a function $f(x, y)$ s.t. $M=\partial f / \partial x$ and $N=\partial f / \partial y$.

Examples

- $D_{j}=\frac{\partial}{\partial x_{j}}$ is an operator on $C^{1}\left(\mathbb{R}^{n}\right)$.
- $L=(D-2)^{2}$ annihilates the function $f_{a}(x)=a x e^{2 x}$.
- The DE $\left(2 x y+y^{2}\right) d x+\left(x^{2}+2 x y\right) d y=0$ is exact from

$$
f(x, y)=x^{2} y+x y^{2}
$$

Partial Antiderivatives and Exact Equations

Example

Solve the DE: $2 x y d x+\left(x^{2}-1\right) d y=0$
Solution: Set $M=2 x y$ and $N=x^{2}-1$.

1. Since $f_{x}=M=2 x y$, then $f(x, y)=\int 2 x y d x=x^{2} y+\phi(y)$. partial antiderivative
2. Now $f_{y}=N=\left(x^{2}-1\right)$, so

$$
\frac{\partial}{\partial y}\left[x^{2} y+\phi(y)\right]=x^{2}-1
$$

Since $\frac{\partial}{\partial y}\left[x^{2} y+\phi(y)\right]=x^{2}+\frac{d}{d y} \phi(y)$, we have $\phi^{\prime}(y)=-1$.
Whence $\phi(y)=-y$
Putting the pieces together, $f(x, y)$ is given by

$$
x^{2} y-y=c
$$

where c is a constant of integration.
Try: $\left(x+y /\left(x^{2}+y^{2}\right)\right) d x+\left(y-x /\left(x^{2}+y^{2}\right)\right) d y=0$.

Picture Time Again

$$
f(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)+\arctan \left(\frac{x}{y}\right)
$$

Tangent Plane

Consider...

In \mathbb{R}^{2}

- Slope of the tangent line at $x=a$ is $f^{\prime}(a)$
- Tangent line is $y=f(a)+f^{\prime}(a)(x-a)$

In \mathbb{R}^{3}

- Tangent vector in the x direction at \vec{a} is $T_{x}=\left\langle 1,0, f_{x}(\vec{a})\right\rangle$
- Tangent vector in the y direction at \vec{a} is $T_{y}=\left\langle 0,1, f_{y}(\vec{a})\right\rangle$
- A plane containing \vec{a} and the tangent vectors is

$$
\left(T_{x} \times T_{y}\right) \cdot(\vec{x}-\vec{a})=0
$$

or (with $\vec{a}=\left\langle x_{0}, y_{0}\right\rangle$ and $\left.\vec{m}_{\vec{a}}=\left\langle f_{x}(\vec{a}), f_{y}(\vec{a})\right\rangle\right)$

$$
\begin{aligned}
z & =f(\vec{a})+f_{x}(\vec{a})\left(x-x_{0}\right)+f_{y}(\vec{a})\left(y-y_{0}\right) \\
& =f(\vec{a})+\vec{m}_{\vec{a}} \cdot(\vec{x}-\vec{a})
\end{aligned}
$$

Differentiation

Definition (Derivative)

Let f be defined on the open set $D \subseteq \mathbb{R}^{2}$. Then f is differentiable at $\vec{x}_{0} \in D$ iff there is a vector \vec{m} s.t.

- Picture Time

$$
f\left(\vec{x}_{0}+\vec{h}\right)=f\left(\vec{x}_{0}\right)+\vec{m} \cdot \vec{h}+\varepsilon\|\vec{h}\|
$$

Equivalently: iff there is a vector \vec{m} s.t. for $T(\vec{x})=f\left(\vec{x}_{0}\right)+\vec{m} \cdot\left(\vec{x}-\vec{x}_{0}\right)$, then

$$
\lim _{\vec{x} \rightarrow \vec{x}_{0}} \frac{f(\vec{x})-T(\vec{x})}{\left\|\vec{x}-\vec{x}_{0}\right\|}=0
$$

Definition (Gradient)

The gradient (vector) of f, written as ∇f of $\operatorname{grad}(f)$ is

$$
\nabla f\left(\vec{x}_{0}\right)=\left\langle\frac{\partial f}{\partial x} \vec{x}_{0}, \frac{\partial f}{\partial y} \vec{x}_{0}\right\rangle
$$

Note: ∇ is a vector differential operator (generalizing D_{x}): $\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\rangle$.

$$
{ }^{3} T(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Derivative

Nota Bene

f is differentiable ${ }^{4}$ at $\vec{a} \quad \Longrightarrow \quad \frac{\partial f}{\partial x}(\vec{a})$ and $\frac{\partial f}{\partial y}(\vec{a})$ both exist $\frac{\partial f}{\partial x}(\vec{a})$ and $\frac{\partial f}{\partial y}(\vec{a})$ both exist $\nRightarrow \quad f$ is differentiable at \vec{a}

Theorem (The "Continuity of Partials Suffices" Thm)
 If

1. f_{x} and f_{y} exist on $B(\vec{a} ; \varepsilon)$ for some $\varepsilon>0$, and
2. f_{x} and f_{y} are continuous at \vec{a},
then
3. f is differentiable at \vec{a}, and
4. $f(\vec{x})=f(\vec{a})+\nabla f(\vec{a}) \cdot(\vec{x}-\vec{a})+\left\langle\varepsilon_{1}, \varepsilon_{2}\right\rangle \cdot(\vec{x}-\vec{a})$ where $\varepsilon_{1}, \varepsilon_{2} \rightarrow 0$ as $x-a_{x}, y-a_{y} \rightarrow 0$, resp.
${ }^{4}$ Careful: Gradient is $\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\rangle$; Total derivative $f^{\prime}\left(\vec{x}_{0}\right)$ is $\nabla f\left(\vec{x}_{0}\right)$

Derivative

Proof (The "Continuity of Partials Suffices" Thm).

Let $\vec{a}=\left\langle x_{0}, y_{0}\right\rangle$.
NTS: $\Delta f(\vec{a})=\nabla f(\vec{a}) \cdot\langle\Delta x, \Delta y\rangle+\vec{\varepsilon} \cdot\langle\Delta x, \Delta y\rangle$ with $\vec{\varepsilon} \rightarrow \overrightarrow{0}$ as $\Delta x, \Delta y \rightarrow 0$.

1. Fix y. MVT $\Rightarrow \exists x_{1} \in B\left(x_{0} ; r\right)$ s.t. $f(x, y)-f\left(x_{0}, y\right)=f_{x}\left(x_{1}, y\right)\left(x-x_{0}\right)$
2. $f_{x} \in C(D) \Rightarrow f_{x}\left(x_{1}, y\right)=f_{x}\left(x_{0}, y_{0}\right)+\varepsilon_{x}$ where $\varepsilon_{x} \rightarrow 0$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ So $f(x, y)-f\left(x_{0}, y\right)=\left[f_{x}\left(x_{0}, y_{0}\right)+\varepsilon_{x}\right]\left(x-x_{0}\right)$ where $\varepsilon_{x, y \rightarrow x_{0}, y_{0}}^{\longrightarrow} 0$.
3. Fix x. MVT $\Rightarrow \exists y_{1} \in B\left(y_{0} ; r\right)$ s.t. $f(x, y)-f\left(x, y_{0}\right)=f_{y}\left(x, y_{1}\right)\left(y-y_{0}\right)$
4. $f_{y} \in C(D) \Rightarrow f_{y}\left(x, y_{1}\right)=f_{y}\left(x_{0}, y_{0}\right)+\varepsilon_{y}$ where $\varepsilon_{y} \rightarrow 0$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ So $f(x, y)-f\left(x, y_{0}\right)=\left[f_{y}\left(x_{0}, y_{0}\right)+\varepsilon_{y}\right]\left(y-y_{0}\right)$ where $\underset{\varepsilon_{x, y \rightarrow x_{0}, y_{0}}}{\longrightarrow}$.
Whence

$$
\begin{gathered}
f(x, y)-f\left(x_{0}, y_{0}\right)=\left[f(x, y)-f\left(x_{0}, y\right)\right]+\left[f\left(x_{0}, y\right)-f\left(x_{0}, y_{0}\right)\right] \\
=\left[f_{x}\left(x_{0}, y_{0}\right)+\varepsilon_{x}\right]\left(x-x_{0}\right)+\left[f_{y}\left(x_{0}, y_{0}\right)+\varepsilon_{y}\right]\left(y-y_{0}\right)
\end{gathered}
$$

Derivatives and Continuity

Theorem ($D \Rightarrow C$ Thm)

If f is differentiable at \vec{a}, then f is continuous at \vec{a}.

Proof.

Since f is differentiable at \vec{a},

$$
f(\vec{a}+\vec{h})-f(\vec{a})=\nabla f(\vec{a}) \cdot \vec{h}+\vec{\varepsilon}\|\vec{h}\|
$$

where $\vec{\varepsilon} \rightarrow 0$ as $\vec{h} \rightarrow 0$. Thus

$$
\begin{aligned}
& |f(\vec{a}+\vec{h})-f(\vec{a})| \leq|\nabla f(\vec{a}) \cdot \vec{h}|+|\vec{\varepsilon}|\|\vec{h}\| \\
& \quad \leq\|\nabla f(\vec{a})\|\|\vec{h}\|+|\vec{\varepsilon}|\|\vec{h}\|=(\|\nabla f(\vec{a})\|+|\vec{\varepsilon}|)\|\vec{h}\|
\end{aligned}
$$

Whence $\lim _{\vec{x} \rightarrow \vec{a}} f(\vec{x})=f(\vec{a})$.

Algebra of Derivatives

Proposition (Algebra of Derivatives)

Let f and g be differentiable functions at \vec{a}. Then

- $f \pm g$ is differentiable at \vec{a}
- $f \cdot g$ is differentiable at \vec{a}
- $f \div g$ is differentiable at \vec{a} as long as $g(\vec{a}) \neq 0$
- $\nabla(f \pm g)=(\nabla f) \pm(\nabla g)$
- $\nabla(f \cdot g)=(\nabla f) g+f(\nabla g)$

Proof.

Homework. Pg 462, \#14.
See: §10.2. Problem 4, pg461 (Maple time.)

Directional Derivatives

Thinking Out Loud. . .

1. - f_{x} is the derivative in the $\langle 1,0\rangle$ direction

- f_{y} is the derivative in the $\langle 0,1\rangle$ direction

2. - $\left(x_{0}+h, y_{0}\right) \underset{h \rightarrow 0}{\longrightarrow}\left(x_{0}, y_{0}\right)$ equiv to $\left\langle x_{0}, y_{0}\right\rangle+h\langle 1,0\rangle \underset{h \rightarrow 0}{\longrightarrow}\left\langle x_{0}, y_{0}\right\rangle$

- $\left(x_{0}, y_{0}+k\right) \underset{k \rightarrow 0}{\longrightarrow}\left(x_{0}, y_{0}\right)$ equiv to $\left\langle x_{0}, y_{0}\right\rangle+k\langle 0,1\rangle \underset{k \rightarrow 0}{\longrightarrow}\left\langle x_{0}, y_{0}\right\rangle$

3. With an arbitrary direction \vec{u} (unit vector): $\quad \vec{x}+h \vec{u} \xrightarrow[h \rightarrow 0]{\longrightarrow} \vec{x}_{0}$

Definition (Directional Derivative)

Let f be defined on an open set D and $\vec{a} \in D$. Then the directional derivative of f in the direction of \vec{u}, a unit vector, is given, if the limit is finite, by

$$
D_{\vec{u}} f(\vec{a})=\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{u})-f(\vec{a})}{h}
$$

or

$$
\frac{\partial f}{\partial \vec{u}}(\vec{a})=\lim _{h \rightarrow 0} \frac{f\left(x+h u_{x}, y+h u_{y}\right)-f(x, y)}{h}
$$

Directional Derivative's Properties

Theorem

If f is differentiable at \vec{a}, then $D_{\vec{u}} f(\vec{a})$ exists for any direction \vec{u}. And

$$
D_{\vec{u}} f(\vec{a})=\nabla f(\vec{a}) \cdot \vec{u}
$$

Proof.

Simple computation from: $f(\vec{a}+h \vec{u})=f(\vec{a})+\nabla f(\vec{a}) \cdot(h \vec{u})+\varepsilon\|h \vec{u}\|$

Corollary ("Method of Steepest Ascent/Descent")

Let f be differentiable at \vec{a}. Then

1. The max rate of change of f at \vec{a} is $\|\nabla f(\vec{a})\|$ in the direction of $\nabla f(\vec{a})$.
2. The min rate of change of f at \vec{a} is $-\|\nabla f(\vec{a})\|$ in the direction of $-\nabla f(\vec{a})$.

Proof.

Simple computation from: $D_{\vec{u}} f(\vec{a})=\nabla f(\vec{a}) \cdot \vec{u}=\|\nabla f(\vec{a})\|\|\vec{u}\| \cos (\theta)$

Directional Derivative's Weird Properties

$$
f(x, y)=\frac{x^{2} y}{x^{6}+y^{2}}
$$

Gradient field \& contour plot
f is not continuous at $\overrightarrow{0}$, but has directional derivatives in all directions at $\overrightarrow{0}$!

The Chain Rule

Theorem (The Chain Rule)

If $x(t)$ and $y(t)$ are differentiable at t_{0}, and f is differentiable at $\vec{a}=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$, then f composed with x and y is differentiable at t_{0} with

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Proof.

Let $z=f(x, y)$ and $\Delta t=t_{1}-t_{0}$. Then $\Delta x=x\left(t_{1}\right)-x\left(t_{0}\right)$ and $\Delta y=y\left(t_{1}\right)-y\left(t_{0}\right)$. Since f is differentiable, we have

$$
\Delta z=f(x+\Delta x, y+\Delta y)-f(x, y)=f_{x} \Delta x+f_{y} \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

So

$$
\frac{\Delta z}{\Delta t}=f_{x} \frac{\Delta x}{\Delta t}+f_{y} \frac{\Delta y}{\Delta t}+\varepsilon_{1} \frac{\Delta x}{\Delta t}+\varepsilon_{2} \frac{\Delta y}{\Delta t}
$$

Since $\Delta t \rightarrow 0 \Longrightarrow \Delta x, \Delta y \rightarrow 0$, then $\varepsilon_{1}, \varepsilon_{2} \rightarrow 0$ with Δt.

The Chain Rule Extended

Corollary (MCR Corollary)

If $x(t, s)$ and $y(t, s)$ are differentiable at $\left(t_{0}, s_{0}\right)$, and $z=f(x, y)$ is differentiable at $\vec{a}=\left(x\left(t_{0}, s_{0}\right), y\left(t_{0}, s_{0}\right)\right)$, then f composed with x and y is differentiable at $\left(t_{0}, s_{0}\right)$ with

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \quad \text { and } \quad \frac{d z}{d s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}
$$

Two Views

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\frac{d z}{d t} & \frac{d z}{d s}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right] \cdot\left[\begin{array}{ll}
\frac{\partial x}{\partial t} & \frac{\partial x}{\partial s} \\
\frac{\partial y}{\partial t} & \frac{\partial y}{\partial s}
\end{array}\right]} \\
& =\nabla f(x, y) \cdot \frac{\partial(x, y)}{\partial(t, s)} \\
& =\nabla f(x, y) \cdot J_{(x, y)}(t, s)
\end{aligned}
$$

The Mean Value Theorem

Theorem (MVT for Two)

Suppose f is differentiable on the open D containing the segment $L(\vec{p}, \vec{q})$. Then there is a \vec{c} on L s.t.

$$
f(\vec{p})-f(\vec{q})=\nabla f(\vec{c}) \cdot(\vec{p}-\vec{q})
$$

Proof.

1. Set $\left(x_{0}, y_{0}\right)=\vec{q}$ and $(h, k)=\vec{p}-\vec{q}$
2. Set $g(t)=f\left(x_{0}+h t, y_{0}+k t\right)$ for $t \in[0,1] \quad$ (g parametrizes f on L)
3. Then $g(1)-g(0)=g^{\prime}(\theta)(1-0)$ for some $\theta \in(0,1)$; i.e.

$$
f(\vec{p})-f(\vec{q})=g^{\prime}(\theta)
$$

4. The MCR implies

$$
g^{\prime}(t)=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}=\left\langle f_{x}, f_{y}\right\rangle \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle
$$

Taylor's Theorem

Theorem (MV Taylor's Theorem)

Suppose f has partial ($n+1$)st derivatives (of all 'mixtures') existing on $B(\vec{a} ; r)$. Then for $\vec{x}=\vec{a}+(h, k)$ in $B(\vec{a} ; r)$,

$$
\begin{aligned}
f(\vec{a}+(h, k))= & f(\vec{a})+\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right) f(\vec{a}) \\
& +\frac{1}{2!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{2} f(\vec{a})+\cdots \\
& +\frac{1}{n!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n} f(\vec{a})+R_{n}
\end{aligned}
$$

where

$$
R_{n}=\frac{1}{(n+1)!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n+1} f(\vec{a}+\theta(h, k))
$$

for some $\theta \in(0,1)$.

Taylor's Theorem Eg

Example (Second Order, Two Variable)

Find the Taylor polynomial of order 2 at $\vec{a}=\langle 1,1\rangle$ and remainder for $f(x, y)=x^{2} y$ and $\vec{x}=\langle 1,1\rangle+\langle h, k\rangle$.

1. $f(\vec{x})=f(1,1)+\left[f_{x}(1,1) \cdot h+f_{y}(1,1) \cdot k\right]$

$$
\begin{aligned}
& +\frac{1}{2}\left[f_{x x}(1,1) \cdot h^{2}+2 f_{x y}(1,1) \cdot h k+f_{y y}(1,1) \cdot k^{2}\right] \\
& +\frac{1}{3!}\left[f_{x x x}(1+\theta h, 1+\theta k) \cdot h^{3}+3 f_{x x y}(1+\theta h, 1+\theta k) \cdot h^{2} k\right. \\
& \left.+3 f_{x y y}(1+\theta h, 1+\theta k) \cdot h k^{2}+f_{y y y}(1+\theta h, 1+\theta k) \cdot k^{3}\right]
\end{aligned}
$$

where $\theta \in(0,1)$
2. $f(1+h, 1+k)=1+[2 h+k]+\frac{1}{2}\left[2 h^{2}+4 h k+0 k^{2}\right]+R_{2}$ and $R_{2}=\frac{1}{6}\left[0 h^{3}+6 h^{2} k+0 h k^{2}+0 k^{3}\right]=h^{2} k$ with $\theta \in(0,1)$

Definition (The Double Sums)

Suppose f is bounded on $R=[a, b] \times[c, d]$. Let $P=P_{1} \times P_{2}$ be a partition of R given by $P_{1}=\left\{a=x_{0}, \ldots, x_{n}=b\right\}$ and $P_{2}=\left\{c=y_{0}, \ldots, y_{m}=d\right\}$ with $R_{i j}=\left[x_{i-1}, y_{j-1}\right] \times\left[x_{i}, y_{j}\right]$. Then the area of $R_{i j}$ is $A_{i j}=\Delta x_{i} \cdot \Delta y_{j}$

- Set $\|P\|=\max \left\{\Delta x_{i}, \Delta y_{j}\right\}$.
- Define

$$
M_{i j}(f)=\sup _{R_{i j}} f(x, y) \quad \text { and } \quad m_{i j}(f)=\inf _{R_{i j}} f(x, y)
$$

- Then define

$$
\begin{gathered}
U(P, f)=\sum_{i} \sum_{j} M_{i j} \Delta x_{i} \Delta y_{j}=\sum_{i, j} M_{i j} A_{i j} \\
L(P, f)=\sum_{i} \sum_{j} m_{i j} \Delta x_{i} \Delta y_{j}=\sum_{i, j} m_{i j} A_{i j} \\
S(P, f)=\sum_{i} \sum_{j} f\left(c_{i}, d_{j}\right) \Delta x_{i} \Delta y_{j}=\sum_{i, j} f\left(c_{i}, d_{j}\right) A_{i j}
\end{gathered}
$$

where $\left(c_{i}, d_{j}\right) \in R_{i j}$ is arbitrary.

