Challenge Problem

Partial Derivatives

Definition (Partial Derivatives)

Let *D* be an open set in \mathbb{R}^2 , $(a, b) \in D$, and $f: D \to \mathbb{R}$. Then

$$\frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h},$$
$$\frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

when the limits are finite.

Example (Woof!)

Let
$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$
 and $f(\vec{0}) = 0$. Then
 $f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - 0}{h} = 0$
and
 $f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - 0}{h} = 0$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - 0}{h} = 0$$

More Partial Derivatives

Examples

1. h(x,

2. g(x,

$$y) = x^2/\sqrt{y}$$
. Then
 $h_x(x,y) = 2x y^{-1/2}$
 $h_y(x,y) = -\frac{1}{2}x^2y^{-3/2}$
 $y) = -\cos(x+y^2)$. Then
 $g_x(x,y) = \sin(x+y^2)$
 $g_y(x,y) = 2y\sin(x+y^2)$

3.
$$f(x,y) = x^2 \sin(y) - xe^{-xy}$$
. Then
 $f_x(x,y) = 2x \sin(y) + (xy-1)e^{-xy}$
 $f_y(x,y) = x^2 (\cos(y) + e^{-xy})$

MAT 5620: 61

$\label{eq:product} \begin{array}{c} \mbox{(det product of the second second$

³ Presented his first paper at age 13; only one of his 19 siblings to reach adulthood. MAT 5620: 62</sup>

Deeper Partial Derivatives, II

Proof (cont).

Apply the MVT to $\Delta_y p$ and $\Delta_x q$ above to have (for some $\theta_j \in (0,1)$) $g(h,k) = k p_y(a,b+\theta_1 k) = k \cdot [f_y(a+h,b+\theta_1 k) - f_y(a,b+\theta_1 k)]$ $g(h,k) = h q_x(a+\theta_2 h,b)) = h \cdot [f_x(a+\theta_2 h,b+k) - f_x(a+\theta_2 h,b)]$

Apply the MVT to $\Delta_x f_y$ and $\Delta_y f_x$ above to have (for some $\theta_k \in (0, 1)$).

$$g(h,k) = hk f_{yx}(a + \theta_3 h, b + \theta_1 k)$$

$$g(h,k) = kh f_{xy}(a + \theta_2 h, b + \theta_4 k)$$

Whence

$$f_{yx}(a+\theta_3h,b+\theta_1k) = f_{xy}(a+\theta_2h,b+\theta_4k)$$

Let $h, k \to 0$. Since f_{xy} and f_{yx} are continuous, then

$$f_{yx}(a,b) = f_{xy}(a,b)$$

MAT 5620: 63

$\begin{array}{c} \mbox{(Maple)} \end{tabular} {$$$$<page-header><page-header>$

Operators and Exact Equations

Definition (Operators and Annihilators)

Let $C^1(S) = \{$ continuously differentiable fcns on $S \}.$

- An *operator* on S is a fcn $\Phi: C^1(S) \to C^1(S)$.
- An *annihilator* is an operator combination that maps a fcn to 0.

Definition (Exact Differential Equations)

A differential equation M dx + N dy = 0 is *exact* iff there is a function f(x, y) s.t. $M = \partial f / \partial x$ and $N = \partial f / \partial y$.

Examples

• $D_j = \frac{\partial}{\partial x_j}$ is an operator on $C^1(\mathbb{R}^n)$.

Functions of Two Variables

- $L = (D-2)^2$ annihilates the function $f_a(x) = axe^{2x}$.
- The DE $(2xy + y^2)dx + (x^2 + 2xy)dy = 0$ is exact from $f(x, y) = x^2y + xy^2$.

MAT 5620: 65

Intro to Lebesgue Measure

Partial Antiderivatives and Exact Equations

Multiple Integration

Example

Solve the DE: $2xy dx + (x^2 - 1) dy = 0$

Solution: Set M = 2xy and $N = x^2 - 1$.

1. Since
$$f_x = M = 2xy$$
, then $f(x, y) = \int 2xy \, dx = x^2y + \phi(y)$.

2. Now
$$f_y = N = (x^2 - 1)$$
, so

$$\frac{\partial}{\partial y} \left[x^2 y + \phi(y) \right] = x^2 - 1.$$

Since $\frac{\partial}{\partial y} \left[x^2 y + \phi(y) \right] = x^2 + \frac{d}{dy} \phi(y)$, we have $\phi'(y) = -1$. Whence $\phi(y) = -y$

Putting the pieces together, f(x, y) is given by

$$x^2y - y = c$$

where c is a constant of integration.

Try: $(x + y/(x^2 + y^2)) dx + (y - x/(x^2 + y^2)) dy = 0.$

In \mathbb{R}^2

Consider...

- Slope of the tangent line at x = a is f'(a)
- Tangent line is y = f(a) + f'(a)(x a)

 $\ln \mathbb{R}^3$

- Tangent vector in the x direction at \vec{a} is $T_x = \langle 1, 0, f_x(\vec{a}) \rangle$
- Tangent vector in the y direction at \vec{a} is $T_y = \langle 0, 1, f_y(\vec{a}) \rangle$
- A plane containing \vec{a} and the tangent vectors is

$$(T_x \times T_y) \cdot (\vec{x} - \vec{a}) = 0$$

or (with $\vec{a} = \langle x_0, y_0 \rangle$ and $\vec{m}_{\vec{a}} = \langle f_x(\vec{a}), f_y(\vec{a}) \rangle$) $z = f(\vec{a}) + f_x(\vec{a})(x - x_0) + f_y(\vec{a})(y - y_0)$ $= f(\vec{a}) + \vec{m}_{\vec{a}} \cdot (\vec{x} - \vec{a})$

Differentiation

Definition (Derivative)

Let *f* be defined on the open set $D \subseteq \mathbb{R}^2$. Then *f* is *differentiable at* $\vec{x}_0 \in D$ iff there is a vector \vec{m} s.t. ▶ Picture Time

$$f(\vec{x}_0 + \vec{h}) = f(\vec{x}_0) + \vec{m} \cdot \vec{h} + \varepsilon \|\vec{h}\|$$

Equivalently: iff there is a vector \vec{m} s.t. for $T(\vec{x}) = f(\vec{x}_0) + \vec{m} \cdot (\vec{x} - \vec{x}_0)$, then

$$\lim_{\vec{x} \to \vec{x}_0} \frac{f(\vec{x}) - T(\vec{x})}{\|\vec{x} - \vec{x}_0\|} = 0$$

The gradient (vector) of f, written as ∇f of grad(f) is

$$\nabla f(\vec{x}_0) = \left\langle \frac{\partial f}{\partial x} \vec{x}_0, \frac{\partial f}{\partial y} \vec{x}_0 \right\rangle$$

Note: ∇ is a vector differential operator (generalizing D_x): $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\rangle$.

³
$$T(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)$$

$$\frac{\text{(dec) to (dec) (de$$

Derivative

Proof (The "Continuity of Partials Suffices" Thm).

Let $\vec{a} = \langle x_0, y_0 \rangle$. NTS: $\Delta f(\vec{a}) = \nabla f(\vec{a}) \cdot \langle \Delta x, \Delta y \rangle + \vec{\varepsilon} \cdot \langle \Delta x, \Delta y \rangle$ with $\vec{\varepsilon} \rightarrow \vec{0}$ as $\Delta x, \Delta y \rightarrow 0$. 1. Fix y. MVT $\Rightarrow \exists x_1 \in B(x_0; r)$ s.t. $f(x, y) - f(x_0, y) = f_x(x_1, y)(x - x_0)$ 2. $f_x \in C(D) \Rightarrow f_x(x_1, y) = f_x(x_0, y_0) + \varepsilon_x$ where $\varepsilon_x \rightarrow 0$ as $(x, y) \rightarrow (x_0, y_0)$ So $f(x, y) - f(x_0, y) = [f_x(x_0, y_0) + \varepsilon_x] (x - x_0)$ where $\varepsilon_x \longrightarrow 0$. 3. Fix x. MVT $\Rightarrow \exists y_1 \in B(y_0; r)$ s.t. $f(x, y) - f(x, y_0) = f_y(x, y_1)(y - y_0)$ 4. $f_y \in C(D) \Rightarrow f_y(x, y_1) = f_y(x_0, y_0) + \varepsilon_y$ where $\varepsilon_y \rightarrow 0$ as $(x, y) \rightarrow (x_0, y_0)$ So $f(x, y) - f(x, y_0) = [f_y(x_0, y_0) + \varepsilon_y] (y - y_0)$ where $\varepsilon_y \xrightarrow{x, y \rightarrow x_0, y_0} 0$. Whence $f(x, y) - f(x_0, y_0) = [f(x, y) - f(x_0, y)] + [f(x_0, y) - f(x_0, y_0)]$ $= [f_x(x_0, y_0) + \varepsilon_x] (x - x_0) + [f_y(x_0, y_0) + \varepsilon_y] (y - y_0)$

MAT 5620: 71

Intro to Lebesgue Measure

Derivatives and Continuity

Multiple Integration

Theorem ($D \Rightarrow C$ Thm)

If f is differentiable at \vec{a} , then f is continuous at \vec{a} .

Functions of Two Variables

Proof.

Since *f* is differentiable at \vec{a} ,

$$f(\vec{a} + \vec{h}) - f(\vec{a}) = \nabla f(\vec{a}) \cdot \vec{h} + \vec{\varepsilon} \|\vec{h}\|$$

where $\vec{\varepsilon} \to 0$ as $\vec{h} \to 0$. Thus

$$\left| f(\vec{a} + \vec{h}) - f(\vec{a}) \right| \le \left| \nabla f(\vec{a}) \cdot \vec{h} \right| + |\vec{\varepsilon}| \|\vec{h}\|$$

 $\leq \|\nabla f(\vec{a})\| \, \|\vec{h}\| + |\vec{\varepsilon}| \, \|\vec{h}\| = (\|\nabla f(\vec{a})\| + |\vec{\varepsilon}|) \, \|\vec{h}\|$

Whence $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = f(\vec{a}).$

Algebra of Derivatives

• $(x_0 + h, y_0) \xrightarrow[h \to 0]{} (x_0, y_0)$ equiv to $\langle x_0, y_0 \rangle + h \langle 1, 0 \rangle \xrightarrow[h \to 0]{} \langle x_0, y_0 \rangle$ • $(x_0, y_0 + k) \xrightarrow[k \to 0]{} (x_0, y_0)$ equiv to $\langle x_0, y_0 \rangle + k \langle 0, 1 \rangle \xrightarrow[k \to 0]{} \langle x_0, y_0 \rangle$

3. With an arbitrary direction \vec{u} (unit vector): $\vec{x} + h \vec{u} \xrightarrow[h \to 0]{} \vec{x}_0$

Definition (Directional Derivative)

Let *f* be defined on an open set *D* and $\vec{a} \in D$. Then the *directional derivative* of *f* in the direction of \vec{u} , a unit vector, is given, if the limit is finite, by

$$D_{\vec{u}}f(\vec{a}) = \lim_{h \to 0} \frac{f(\vec{a} + h\,\vec{u}) - f(\vec{a})}{h}$$

or

$$\frac{\partial f}{\partial \vec{u}}(\vec{a}) = \lim_{h \to 0} \frac{f(x + hu_x, y + hu_y) - f(x, y)}{h}$$

MAT 5620: 75

Directional Derivative's Properties

Theorem

If f is differentiable at \vec{a} , then $D_{\vec{u}}f(\vec{a})$ exists for any direction \vec{u} . And

 $D_{\vec{u}}f(\vec{a}) = \nabla f(\vec{a})\cdot\vec{u}$

Proof.

Simple computation from: $f(\vec{a} + h\vec{u}) = f(\vec{a}) + \nabla f(\vec{a}) \cdot (h\vec{u}) + \varepsilon ||h\vec{u}||$

Corollary ("Method of Steepest Ascent/Descent")

Let f be differentiable at \vec{a} . Then

- 1. The max rate of change of f at \vec{a} is $\|\nabla f(\vec{a})\|$ in the direction of $\nabla f(\vec{a})$.
- 2. The min rate of change of f at \vec{a} is $-\|\nabla f(\vec{a})\|$ in the direction of $-\nabla f(\vec{a})$.

Proof.

Simple computation from: $D_{\vec{u}}f(\vec{a}) = \nabla f(\vec{a}) \cdot \vec{u} = \|\nabla f(\vec{a})\| \|\vec{u}\| \cos(\theta)$

Visit Maple.

f is not continuous at $\vec{0}$, but has directional derivatives in all directions at $\vec{0}$!

The Chain Rule

Theorem (The Chain Rule)

If x(t) and y(t) are differentiable at t_0 , and f is differentiable at $\vec{a} = (x(t_0), y(t_0))$, then f composed with x and y is differentiable at t_0 with

 $\frac{d}{dt}f(x(t), y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$

Proof.

Let z = f(x, y) and $\Delta t = t_1 - t_0$. Then $\Delta x = x(t_1) - x(t_0)$ and $\Delta y = y(t_1) - y(t_0)$. Since f is differentiable, we have $\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y) = f_x \Delta x + f_y \Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$ So $\frac{\Delta z}{\Delta t} = f_x \frac{\Delta x}{\Delta t} + f_y \frac{\Delta y}{\Delta t} + \varepsilon_1 \frac{\Delta x}{\Delta t} + \varepsilon_2 \frac{\Delta y}{\Delta t}$ Since $\Delta t \to 0 \implies \Delta x, \Delta y \to 0$, then $\varepsilon_1, \varepsilon_2 \to 0$ with Δt .

MAT 5620: 77

$\begin{array}{c|ccccc} \hline \begin{tabular}{|ccccc|ccccc|ccccc|ccccc|} \hline \begin{tabular}{|ccccc|cccc|cccc|cccc|} \hline \begin{tabular}{|cccc|cccc|cccc|} \hline \begin{tabular}{|cccc|cccc|cccc|} \hline \begin{tabular}{|cccc|cccc|cccc|} \hline \begin{tabular}{|ccc|cccc|cccc|} \hline \begin{tabular}{|ccc|cccc|cccc|} \hline \begin{tabular}{|ccc|cccc|cccc|} \hline \begin{tabular}{|ccc|cccc|ccc|} \hline \begin{tabular}{|ccc|ccc|ccc|} \hline \begin{tabular}{|ccc|ccc|ccc|} \hline \begin{tabular}{|ccc|ccc|} \hline \begin{tabular}{|ccc|ccc|} \hline \begin{tabular}{|ccc|ccc|} \hline \begin{tabular}{|ccc|ccc|} \hline \begin{tabular}{|ccc|ccc|} \hline \begin{tabular}{|ccc|} \hline \begin{tab$

The Mean Value Theorem

Theorem (*MVT for Two*)

Suppose *f* is differentiable on the open *D* containing the segment $L(\vec{p}, \vec{q})$. Then there is a \vec{c} on *L* s.t.

$$f(\vec{p}) - f(\vec{q}) = \nabla f(\vec{c}) \cdot (\vec{p} - \vec{q})$$

Proof.

- 1. Set $(x_0, y_0) = \vec{q}$ and $(h, k) = \vec{p} \vec{q}$
- 2. Set $g(t) = f(x_0 + ht, y_0 + kt)$ for $t \in [0, 1]$ (g parametrizes f on L)
- 3. Then $g(1) g(0) = g'(\theta)(1 0)$ for some $\theta \in (0, 1)$; i.e.

$$f(\vec{p}) - f(\vec{q}) = g'(\theta)$$

4. The MCR implies

$$g'(t) = f_x \, \frac{dx}{dt} + f_y \, \frac{dy}{dt} = \langle f_x, f_y \rangle \cdot \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle$$

Multiple Integration

Intro to Lebesgue Measure

Taylor's Theorem

Theorem (MV Taylor's Theorem)

Functions of Two Variables

Suppose *f* has partial (n + 1)st derivatives (of all 'mixtures') existing on $B(\vec{a}; r)$. Then for $\vec{x} = \vec{a} + (h, k)$ in $B(\vec{a}; r)$,

$$f(\vec{a} + (h, k)) = f(\vec{a}) + \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)f(\vec{a}) \\ + \frac{1}{2!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2 f(\vec{a}) + \cdots \\ + \frac{1}{n!}\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^n f(\vec{a}) + R_n$$

where

$$R_n = \frac{1}{(n+1)!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{n+1} f(\vec{a} + \theta(h, k))$$

for some $\theta \in (0, 1)$.

Taylor's Theorem Eg

Example (Second Order, Two Variable)

Find the Taylor polynomial of order 2 at $\vec{a} = \langle 1, 1 \rangle$ and remainder for $f(x, y) = x^2 y$ and $\vec{x} = \langle 1, 1 \rangle + \langle h, k \rangle$.

1.
$$f(\vec{x}) = f(1,1) + [f_x(1,1) \cdot h + f_y(1,1) \cdot k] \\ + \frac{1}{2} [f_{xx}(1,1) \cdot h^2 + 2f_{xy}(1,1) \cdot hk + f_{yy}(1,1) \cdot k^2] \\ + \frac{1}{3!} [f_{xxx}(1+\theta h, 1+\theta k) \cdot h^3 + 3f_{xxy}(1+\theta h, 1+\theta k) \cdot h^2 k \\ + 3f_{xyy}(1+\theta h, 1+\theta k) \cdot hk^2 + f_{yyy}(1+\theta h, 1+\theta k) \cdot k^3]$$
where $\theta \in (0,1)$

2.
$$f(1+h, 1+k) = 1 + [2h+k] + \frac{1}{2} [2h^2 + 4hk + 0k^2] + R_2$$

and $R_2 = \frac{1}{6} [0h^3 + 6h^2k + 0hk^2 + 0k^3] = h^2k$ with $\theta \in (0, 1)$

MAT 5620: 81

Intro to Lebesgue Measure

Multiple Integration

Multiple Integration

Definition (The Double Sums)

Functions of Two Variables

Suppose *f* is bounded on $R = [a, b] \times [c, d]$. Let $P = P_1 \times P_2$ be a partition of R given by $P_1 = \{a = x_0, \ldots, x_n = b\}$ and $P_2 = \{c = y_0, \ldots, y_m = d\}$ with $R_{ij} = [x_{i-1}, y_{j-1}] \times [x_i, y_j]$. Then the area of R_{ij} is $A_{ij} = \Delta x_i \cdot \Delta y_j$

- Set $||P|| = \max{\{\Delta x_i, \Delta y_j\}}.$
- Define

Vector Calculus

$$M_{ij}(f) = \sup_{R_{ij}} f(x, y)$$
 and $m_{ij}(f) = \inf_{R_{ij}} f(x, y)$

Then define

$$U(P, f) = \sum_{i} \sum_{j} M_{ij} \Delta x_i \Delta y_j = \sum_{i,j} M_{ij} A_{ij}$$
$$L(P, f) = \sum_{i} \sum_{j} m_{ij} \Delta x_i \Delta y_j = \sum_{i,j} m_{ij} A_{ij}$$
$$S(P, f) = \sum_{i} \sum_{j} f(c_i, d_j) \Delta x_i \Delta y_j = \sum_{i,j} f(c_i, d_j) A_{ij}$$
where $(c_i, d_j) \in R_{ij}$ is arbitrary.