A Useful Lemma

Lemma

Let f be bounded on the rectangle R with partition P. Set

$$m = \inf_R f(x, y)$$
 and $M = \sup_R f(x, y)$.

1. Then

$$m(b-a)(d-c) \le L(P,f) \le S(P,f) \le U(P,f) \le M(b-a)(d-c)$$

2. If Q partitions R and $P \subseteq Q$, then

$$L(P, f) \le L(Q, f)$$
 and $U(Q, f) \le U(P, f)$

- 3. For any partitions P and Q of R, $L(P, f) \leq U(Q, f)$.
- 4. $\sup_{P} L(P, f) \le \inf_{P} U(P, f)$
- 5. The area of R is $A = \sum_{ij} A_{ij} = (b-a)(d-c)$

MAT 5620: 87

Vector Calculus

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

The Integral

Definition (Double Integral)

Let f be bounded on the rectangle R. Then f is *Riemann integrable on* R iff the *upper double integral* and the *lower double integral*, resp.,

$$\overline{\iint}_R f \, dA = \inf_P U(P,f) \quad \text{and} \quad \underline{\iint}_R f \, dA = \sup_P L(P,f)$$

both exist and are equal. We write $\iint_R f \, dA$ for the common value.

Theorem

A bounded function f on the rectangle R is Riemann integrable iff

1. for any $\varepsilon > 0$ there is a partition P of R s.t.

$$U(P, f) - L(P, f) < \varepsilon.$$

2. there is a seq of partitions $\{P_n\}$ s.t.

$$\lim_{n \to \infty} U(P_n, f) = I = \lim_{n \to \infty} L(P_n, f).$$

A Sample

Example

Find $\iint_R f \, dA$ when $f(x,y) = \frac{1}{2} \sin(x+y)$ and $R = [0, \frac{\pi}{2}]^2$.

- 1. Use a uniform grid: $x_i = \frac{i}{n} \frac{\pi}{2}$, $y_j = \frac{j}{n} \frac{\pi}{2}$, & $(c_i, d_j) = (x_i, y_j)$ for i, j = 0..n
- 2. A generic Riemann sum becomes

$$S(P_n, f) = \sum_{i,j \in [1,n]} f\left(\frac{i}{n} \frac{\pi}{2}, \frac{j}{n} \frac{\pi}{2}\right) \left(\frac{i}{n} \frac{\pi}{2} - \frac{i-1}{n} \frac{\pi}{2}\right) \left(\frac{j}{n} \frac{\pi}{2} - \frac{j-1}{n} \frac{\pi}{2}\right)$$
$$= \frac{\pi^2}{4n^2} \sum_{i,j \in [1,n]} \frac{1}{2} \sin\left(\frac{i}{n} \frac{\pi}{2} + \frac{j}{n} \frac{\pi}{2}\right)$$

3. Since $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$, we have

$$S(P_n, f) = \frac{\pi^2}{8n^2} \sum_{i,j \in [1,n]} \left[\sin\left(\frac{i}{n} \frac{\pi}{2}\right) \cos\left(\frac{j}{n} \frac{\pi}{2}\right) + \cos\left(\frac{i}{n} \frac{\pi}{2}\right) \sin\left(\frac{j}{n} \frac{\pi}{2}\right) \right]$$
$$= \frac{\pi^2}{8n^2} \sum_{i,j \in [1,n]} \left[\sin\left(\frac{i}{n} \frac{\pi}{2}\right) \cos\left(\frac{j}{n} \frac{\pi}{2}\right) \right] + \sum_{i,j \in [1,n]} \left[\cos\left(\frac{i}{n} \frac{\pi}{2}\right) \sin\left(\frac{j}{n} \frac{\pi}{2}\right) \right]$$

MAT 5620: 89

Vector Calculus

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

A Sample (cont)

Example (cont)

4. Distribute the sums

$$S(P_n, f) = \frac{\pi^2}{8n^2} \left[\sum_{i=1}^n \sin\left(\frac{i}{n}\frac{\pi}{2}\right) \sum_{j=1}^n \cos\left(\frac{j}{n}\frac{\pi}{2}\right) + \sum_{i=1}^n \cos\left(\frac{i}{n}\frac{\pi}{2}\right) \sum_{j=1}^n \sin\left(\frac{j}{n}\frac{\pi}{2}\right) \right]$$

$$= 2\frac{\pi^2}{8n^2} \sum_{i=1}^n \cos\left(\frac{i}{n}\frac{\pi}{2}\right) \sum_{j=1}^n \sin\left(\frac{j}{n}\frac{\pi}{2}\right)$$

$$= \left[\frac{\pi}{2n} \sum_{i=1}^n \cos\left(\frac{i}{n}\frac{\pi}{2}\right) \right] \cdot \left[\frac{\pi}{2n} \sum_{j=1}^n \sin\left(\frac{j}{n}\frac{\pi}{2}\right) \right]$$

5.
$$\lim_{n \to \infty} \frac{\pi}{2n} \sum_{j=1}^{n} T\left(\frac{j}{n} \frac{\pi}{2}\right) = \int_{0}^{\pi/2} T(x) \, dx$$
, so
$$\lim_{n \to \infty} S(P_n, f) = \int_{0}^{\pi/2} \cos(x) \, dx \cdot \int_{0}^{\pi/2} \sin(x) \, dx = 1$$

6. Whence
$$\iint_{[0,\pi/2]\times[0,\pi/2]} \frac{1}{2}\sin(x+y) \, dA = 1$$

Continuous Functions

Theorem (Continuous Functions Are Integrable)

If f is continuous on $R = [a, b] \times [c, d]$, then f is integrable on R.

Proof.

Let $\varepsilon > 0$. Set $A = \operatorname{area}(R)$.

- 1. Since f is cont on R, then f is unif cont on R. Hence there is a $\delta>0$ s.t. whenever $\vec{x_1},\vec{x_2}\in R$ with $\|\vec{x_1}-\vec{x_2}\|<\delta$, then $|f(\vec{x_1})-f(\vec{x_2})|<\varepsilon$.
- 2. Choose a partition P s.t. $||P|| < \delta$.
- 3. Then $U(P,f)-L(P,f)=\sum_{i,j}M_{ij}\Delta x_i\Delta y_j-\sum_{i,j}m_{ij}\Delta x_i\Delta y_j$. I.e., $U(P,f)-L(P,f)=\sum_{i,j}(M_{ij}-m_{ij})\Delta A_{ij}<\sum_{i,j}\varepsilon\Delta A_{ij}=A\,\varepsilon$

MAT 5620: 91

Vector Calculus

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

Bilinearity

Theorem (Bilinearity of Integration)

1. Let f_1 and f_2 be integrable on R, and c_1 and c_2 be constants. Then

$$\iint_{R} c_{1} f_{1} \pm c_{2} f_{2} dA = c_{1} \iint_{R} f_{1} dA \pm c_{2} \iint_{R} f_{2} dA$$

- 2. Let f be bounded on $R = R_1 + R_2$.
 - 2.1 Then f is integrable on R iff f is integrable on R_1 and R_2 .
 - 2.2 If f is integrable on R, then

$$\iint\limits_R f \, dA = \iint\limits_{R_1} f \, dA + \iint\limits_{R_2} f \, dA$$

Proposition

Let f be integrable on R with $m = \min_R f$ and $M = \max_R f$. Then

$$m \cdot \operatorname{area}(R) \le \iint_R f \, dA \le M \cdot \operatorname{area}(R)$$

Iteration

Thinking Out Loud...

1. Fix x^* . Suppose $f(x^*, y)$ is an integrable function of y. Define

$$g(x) = \int_{[c,d]} f(x,y) \, dy$$

Then integrate q to get

$$\int_{[a,b]} \left[\int_{[c,d]} f(x,y) \, dy \right] dx$$

2. Fix y^* . Suppose $f(x, y^*)$ is an integrable function of x. Define

$$h(y) = \int_{[a,b]} f(x,y) \, dx$$

Then integrate h to get

$$\int_{[c,d]} \left[\int_{[a,b]} f(x,y) \, dx \right] dy$$

How do these integrals relate to $\iint_R f dA$?

MAT 5620: 93

Vector Calculus

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

Iteration and Guido Fubini

Theorem (Fubini (1910))

Let f be integrable on a rectangle R. If for each x, the function h(y)=f(x,y) is integrable over $y\in [c,d]$, then $g(x)=\int_c^d f(x,y)\,dy$ is integrable for $x\in [a,b]$, and

 $\iint\limits_{D} f \, dA = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) \, dy \right] dx$

Corollary

Let f be integrable on a rectangle R. If

- 1. h(y) = f(x, y) is integrable over $y \in [c, d]$, and
- 2. k(x) = f(x, y) is integrable over $x \in [a, b]$,

then

$$\iint\limits_R f \, dA = \int_a^b \left[\int_c^d f(x, y) \, dy \right] dx = \int_c^d \left[\int_a^b f(x, y) \, dx \right] dy$$

Proving Fubini's Theorem

Proof (sketch).

Let $\varepsilon > 0$.

- 1. Find a partition P of $[a,b] \times [c,d]$ where $U(P,f) L(P,f) < \varepsilon$
- 2. 'Slice' this partition into $P_1(x) \times P_2(y)$.
- 3. Use $U(P_1,g) L(P_1,g) < U(P,f) L(P,f)$ to show $g(x) = \int_{[c,d]} f(x,y) dy \text{ is integrable over } [a,b].$
- 4. Show $L(P, f) \le \int_{[a,b]} g \, dx \le U(P, f)$
- 5. Conclude $\int_{[a,b]} g(x) dx = \iint_R f(x,y) dA$
- 6. Use symmetry to have $\int_{[c,d]} h(y) \, dy = \iint\limits_R f(x,y) dA$

Observe the doneness of the proof.

MAT 5620: 95

Vector Calculus

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

Fubini Examples

Example (Good Function! Biscuit!)

Let $N(x,y) = e^{-(x^2+y^2)}$ and $R = \mathbb{R}^2$.

1. Change to polar coordinates.

$$\iint\limits_R N(x,y) dA = \iint\limits_{[0,\infty]\times[0,2\pi]} N(r,\theta) dA$$

2. Apply Fubini's thm two ways:

2.1
$$\iint\limits_R N(r,\theta) \, dA = \int_0^{2\pi} \left[\int_0^{\infty} e^{-r^2} r \, dr \right] d\theta = \int_0^{2\pi} \frac{1}{2} \, d\theta = \pi$$

2.2
$$\iint_{R} e^{-x^{2}} e^{-y^{2}} dA = \int_{-\infty}^{\infty} e^{-y^{2}} \left[\int_{-\infty}^{\infty} e^{-x^{2}} dx \right] dy = \int_{-\infty}^{\infty} e^{-y^{2}} dy \cdot \int_{-\infty}^{\infty} e^{-x^{2}} dx$$

3. Whence $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$. Whereupon $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = 1$.

Fubini Examples II

Example (Bad Function! No Biscuit!)

Let
$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
 on $R = [0,1] \times [0,1]$.

1.
$$\int_0^1 \left[\int_0^1 f(x,y) \, dx \right] dy = -\frac{\pi}{4}$$

2.
$$\int_0^1 \left[\int_0^1 f(x, y) \, dy \right] dx = +\frac{\pi}{4}$$

3.
$$\int_0^1 \left[\int_0^1 |f(x,y)| \, dy \right] dx = \infty$$

So
$$\iint\limits_R f(x,y)\,dA$$
 does not exist

MAT 5620: 97

Vector Calculus

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

The Leibniz Rule

Theorem (Leibniz Rule)

Suppose f has continuous partials on $R = [a, b] \times [c, d]$. Set

$$g(x) = \int_{a}^{d} f(x,y) \, dy$$
. Then g is differentiable on (a,b) and

$$\frac{d}{dx}g(x) = \int_{c}^{d} \frac{\partial}{\partial x} f(x, y) \, dx$$

Proof.

- 1. f has cont partials $\implies f$ is cont and differentiable on int(R)
- 2. Then f is integ., so for every fixed x^* , $f(x^*, y)$ is integ. on [c, d]
- 3. Choose $x \neq x^*$, then $\exists x_0$ between x and x^* s.t.

$$\frac{g(x) - g(x^*)}{x - x^*} = \int_c^d \frac{f(x, y) - f(x^*, y)}{x - x^*} \, dy = \int f_x(x_0, y) \, dy$$

4. Take limits as $x \to x^*$ to finish

MAT 5620: 98