A Useful Lemma

Lemma

Let f be bounded on the rectangle R with partition P. Set

$$
m=\inf _{R} f(x, y) \quad \text { and } \quad M=\sup _{R} f(x, y) .
$$

1. Then

$$
m(b-a)(d-c) \leq L(P, f) \leq S(P, f) \leq U(P, f) \leq M(b-a)(d-c)
$$

2. If Q partitions R and $P \subseteq Q$, then

$$
L(P, f) \leq L(Q, f) \quad \text { and } \quad U(Q, f) \leq U(P, f)
$$

3. For any partitions P and Q of $R, \quad L(P, f) \leq U(Q, f)$.
4. $\sup _{P} L(P, f) \leq \inf _{P} U(P, f)$
5. The area of R is $A=\sum_{i j} A_{i j}=(b-a)(d-c)$

The Integral

Definition (Double Integral)

Let f be bounded on the rectangle R. Then f is Riemann integrable on R iff the upper double integral and the lower double integral, resp.,

$$
\overline{\iint_{R}} f d A=\inf _{P} U(P, f) \quad \text { and } \quad \iint_{R} f d A=\sup _{P} L(P, f)
$$

both exist and are equal. We write $\iint_{R} f d A$ for the common value.

Theorem

A bounded function f on the rectangle R is Riemann integrable iff

1. for any $\varepsilon>0$ there is a partition P of R s.t.

$$
U(P, f)-L(P, f)<\varepsilon
$$

2. there is a seq of partitions $\left\{P_{n}\right\}$ s.t.

$$
\lim _{n \rightarrow \infty} U\left(P_{n}, f\right)=I=\lim _{n \rightarrow \infty} L\left(P_{n}, f\right) .
$$

A Sample

Example

Find $\iint_{R} f d A$ when $f(x, y)=\frac{1}{2} \sin (x+y)$ and $R=\left[0, \frac{\pi}{2}\right]^{2}$.

1. Use a uniform grid: $x_{i}=\frac{i}{n} \frac{\pi}{2}, y_{j}=\frac{j}{n} \frac{\pi}{2}, \&\left(c_{i}, d_{j}\right)=\left(x_{i}, y_{j}\right)$ for $i, j=0 . . n$
2. A generic Riemann sum becomes

$$
\begin{aligned}
S\left(P_{n}, f\right) & =\sum_{i, j \in[1, n]} f\left(\frac{i}{n} \frac{\pi}{2}, \frac{j}{n} \frac{\pi}{2}\right)\left(\frac{i}{n} \frac{\pi}{2}-\frac{i-1}{n} \frac{\pi}{2}\right)\left(\frac{j}{n} \frac{\pi}{2}-\frac{j-1}{n} \frac{\pi}{2}\right) \\
& =\frac{\pi^{2}}{4 n^{2}} \sum_{i, j \in[1, n]} \frac{1}{2} \sin \left(\frac{i}{n} \frac{\pi}{2}+\frac{j}{n} \frac{\pi}{2}\right)
\end{aligned}
$$

3. Since $\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$, we have

$$
\begin{aligned}
S\left(P_{n}, f\right) & =\frac{\pi^{2}}{8 n^{2}} \sum_{i, j \in[1, n]}\left[\sin \left(\frac{i}{n} \frac{\pi}{2}\right) \cos \left(\frac{j}{n} \frac{\pi}{2}\right)+\cos \left(\frac{i}{n} \frac{\pi}{2}\right) \sin \left(\frac{j}{n} \frac{\pi}{2}\right)\right] \\
& =\frac{\pi^{2}}{8 n^{2}} \sum_{i, j \in[1, n]}\left[\sin \left(\frac{i}{n} \frac{\pi}{2}\right) \cos \left(\frac{j}{n} \frac{\pi}{2}\right)\right]+\sum_{i, j \in[1, n]}\left[\cos \left(\frac{i}{n} \frac{\pi}{2}\right) \sin \left(\frac{j}{n} \frac{\pi}{2}\right)\right]
\end{aligned}
$$

A Sample (cont)

Example (cont)

4. Distribute the sums

$$
\begin{aligned}
S\left(P_{n}, f\right) & =\frac{\pi^{2}}{8 n^{2}}\left[\sum_{i=1}^{n} \sin \left(\frac{i}{n} \frac{\pi}{2}\right) \sum_{j=1}^{n} \cos \left(\frac{j}{n} \frac{\pi}{2}\right)+\sum_{i=1}^{n} \cos \left(\frac{i}{n} \frac{\pi}{2}\right) \sum_{j=1}^{n} \sin \left(\frac{j}{n} \frac{\pi}{2}\right)\right] \\
& =2 \frac{\pi^{2}}{8 n^{2}} \sum_{i=1}^{n} \cos \left(\frac{i}{n} \frac{\pi}{2}\right) \sum_{j=1}^{n} \sin \left(\frac{j}{n} \frac{\pi}{2}\right) \\
& =\left[\frac{\pi}{2 n} \sum_{i=1}^{n} \cos \left(\frac{i}{n} \frac{\pi}{2}\right)\right] \cdot\left[\frac{\pi}{2 n} \sum_{j=1}^{n} \sin \left(\frac{j}{n} \frac{\pi}{2}\right)\right]
\end{aligned}
$$

5. $\lim _{n \rightarrow \infty} \frac{\pi}{2 n} \sum_{j=1}^{n} T\left(\frac{j}{n} \frac{\pi}{2}\right)=\int_{0}^{\pi / 2} T(x) d x$, so

$$
\lim _{n \rightarrow \infty} S\left(P_{n}, f\right)=\int_{0}^{\pi / 2} \cos (x) d x \cdot \int_{0}^{\pi / 2} \sin (x) d x=1
$$

6. Whence $\iint_{[0, \pi / 2] \times[0, \pi / 2]} \frac{1}{2} \sin (x+y) d A=1$

Continuous Functions

Theorem (Continuous Functions Are Integrable)

If f is continuous on $R=[a, b] \times[c, d]$, then f is integrable on R.

Proof.

Let $\varepsilon>0$. Set $A=\operatorname{area}(R)$.

1. Since f is cont on R, then f is unif cont on R. Hence there is a $\delta>0$ s.t. whenever $\overrightarrow{x_{1}}, \overrightarrow{x_{2}} \in R$ with $\left\|\overrightarrow{x_{1}}-\overrightarrow{x_{2}}\right\|<\delta$, then $\left|f\left(\overrightarrow{x_{1}}\right)-f\left(\overrightarrow{x_{2}}\right)\right|<\varepsilon$.
2. Choose a partition P s.t. $\|P\|<\delta$.
3. Then $U(P, f)-L(P, f)=\sum_{i, j} M_{i j} \Delta x_{i} \Delta y_{j}-\sum_{i, j} m_{i j} \Delta x_{i} \Delta y_{j}$. I.e., $U(P, f)-L(P, f)=\sum_{i, j}\left(M_{i j}-m_{i j}\right) \Delta A_{i j}<\sum_{i, j}^{i, j} \varepsilon \Delta A_{i j}=A \varepsilon$

Bilinearity

Theorem (Bilinearity of Integration)

1. Let f_{1} and f_{2} be integrable on R, and c_{1} and c_{2} be constants.

Then

$$
\iint_{R} c_{1} f_{1} \pm c_{2} f_{2} d A=c_{1} \iint_{R} f_{1} d A \pm c_{2} \iint_{R} f_{2} d A
$$

2. Let f be bounded on $R=R_{1}+R_{2}$.
2.1 Then f is integrable on R iff f is integrable on R_{1} and R_{2}.
2.2 If f is integrable on R, then

$$
\iint_{R} f d A=\iint_{R_{1}} f d A+\iint_{R_{2}} f d A
$$

Proposition

Let f be integrable on R with $m=\min _{R} f$ and $M=\max _{R} f$. Then

$$
m \cdot \operatorname{area}(R) \leq \iint_{R} f d A \leq M \cdot \operatorname{area}(R)
$$

Iteration

Thinking Out Loud. . .

1. Fix x^{*}. Suppose $f\left(x^{*}, y\right)$ is an integrable function of y. Define

$$
g(x)=\int_{[c, d]} f(x, y) d y
$$

Then integrate g to get

$$
\int_{[a, b]}\left[\int_{[c, d]} f(x, y) d y\right] d x
$$

2. Fix y^{*}. Suppose $f\left(x, y^{*}\right)$ is an integrable function of x. Define

$$
h(y)=\int_{[a, b]} f(x, y) d x
$$

Then integrate h to get

$$
\int_{[c, d]}\left[\int_{[a, b]} f(x, y) d x\right] d y
$$

How do these integrals relate to $\iint_{R} f d A$?

Iteration and Guido Fubini

Theorem (Fubini (1910))

Let f be integrable on a rectangle R. If for each x, the function $h(y)=f(x, y)$ is integrable over $y \in[c, d]$, then $g(x)=\int_{c}^{d} f(x, y) d y$ is integrable for $x \in[a, b]$, and

$$
\iint_{R} f d A=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
$$

Corollary

Let f be integrable on a rectangle R. If

1. $h(y)=f(x, y)$ is integrable over $y \in[c, d]$, and
2. $k(x)=f(x, y)$ is integrable over $x \in[a, b]$,
then

$$
\iint_{R} f d A=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

Proving Fubini's Theorem

Proof (sketch).

Let $\varepsilon>0$.

1. Find a partition P of $[a, b] \times[c, d]$ where $U(P, f)-L(P, f)<\varepsilon$
2. 'Slice' this partition into $P_{1}(x) \times P_{2}(y)$.
3. Use $U\left(P_{1}, g\right)-L\left(P_{1}, g\right)<U(P, f)-L(P, f)$ to show $g(x)=\int_{[c, d]} f(x, y) d y$ is integrable over $[a, b]$.
4. Show $L(P, f) \leq \int_{[a, b]} g d x \leq U(P, f)$
5. Conclude $\int_{[a, b]} g(x) d x=\iint_{R} f(x, y) d A$
6. Use symmetry to have $\int_{[c, d]} h(y) d y=\iint_{R} f(x, y) d A$

Observe the doneness of the proof.

Fubini Examples

Example (Good Function! Biscuit!)

Let $N(x, y)=e^{-\left(x^{2}+y^{2}\right)}$ and $R=\mathbb{R}^{2}$.

1. Change to polar coordinates.

$$
\iint_{R} N(x, y) d A=\iint_{[0, \infty] \times[0,2 \pi]} N(r, \theta) d A
$$

2. Apply Fubini's thm two ways:
$2.1 \iint_{R} N(r, \theta) d A=\int_{0}^{2 \pi}\left[\int_{0}^{\infty} e^{-r^{2}} r d r\right] d \theta=\int_{0}^{2 \pi} \frac{1}{2} d \theta=\pi$
$2.2 \iint_{R} e^{-x^{2}} e^{-y^{2}} d A=\int_{-\infty}^{\infty} e^{-y^{2}}\left[\int_{-\infty}^{\infty} e^{-x^{2}} d x\right] d y=\int_{-\infty}^{\infty} e^{-y^{2}} d y \cdot \int_{-\infty}^{\infty} e^{-x^{2}} d x$
3. Whence $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$. Whereupon $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=1$.

Fubini Examples II

Example (Bad Function! No Biscuit!)

Let $f(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$ on $R=[0,1] \times[0,1]$.

1. $\int_{0}^{1}\left[\int_{0}^{1} f(x, y) d x\right] d y=-\frac{\pi}{4}$
2. $\int_{0}^{1}\left[\int_{0}^{1} f(x, y) d y\right] d x=+\frac{\pi}{4}$
3. $\int_{0}^{1}\left[\int_{0}^{1}|f(x, y)| d y\right] d x=\infty$

So $\iint_{R} f(x, y) d A$ does not exist

The Leibniz Rule

Theorem (Leibniz Rule)

Suppose f has continuous partials on $R=[a, b] \times[c, d]$. Set $g(x)=\int_{c}^{d} f(x, y) d y$. Then g is differentiable on (a, b) and

$$
\frac{d}{d x} g(x)=\int_{c}^{d} \frac{\partial}{\partial x} f(x, y) d x
$$

Proof.

1. f has cont partials $\Longrightarrow f$ is cont and differentiable on $\operatorname{int}(R)$
2. Then f is integ., so for every fixed $x^{*}, f\left(x^{*}, y\right)$ is integ. on $[c, d]$
3. Choose $x \neq x^{*}$, then $\exists x_{0}$ between x and x^{*} s.t.

$$
\frac{g(x)-g\left(x^{*}\right)}{x-x^{*}}=\int_{c}^{d} \frac{f(x, y)-f\left(x^{*}, y\right)}{x-x^{*}} d y=\int f_{x}\left(x_{0}, y\right) d y
$$

4. Take limits as $x \rightarrow x^{*}$ to finish
