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A Useful Lemma

Lemma
Let f be bounded on the rectangle R with partition P . Set

m = inf

R

f(x, y) and M = sup

R

f(x, y).

1. Then

m(b � a)(d � c)  L(P, f)  S(P, f)  U(P, f)  M(b � a)(d � c)

2. If Q partitions R and P ✓ Q, then

L(P, f)  L(Q, f) and U(Q, f)  U(P, f)

3. For any partitions P and Q of R, L(P, f)  U(Q, f).

4. sup

P

L(P, f)  inf

P

U(P, f)

5. The area of R is A =

P
ij

A
ij

= (b � a)(d � c)
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The Integral

Definition (Double Integral)
Let f be bounded on the rectangle R. Then f is Riemann integrable on R iff
the upper double integral and the lower double integral, resp.,

x

R

f dA = inf

P

U(P, f) and
x

R

f dA = sup

P

L(P, f)

both exist and are equal. We write
x

R

f dA for the common value.

Theorem
A bounded function f on the rectangle R is Riemann integrable iff

1. for any " > 0 there is a partition P of R s.t.

U(P, f)� L(P, f) < ".

2. there is a seq of partitions {P
n

} s.t.

lim

n!1
U(P

n

, f) = I = lim

n!1
L(P

n

, f).
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A Sample

Example
Find

x

R

f dA when f(x, y) = 1
2 sin(x+ y) and R = [0, ⇡

2 ]
2.

1. Use a uniform grid: x
i

=

i

n

⇡

2 , y
j

=

j

n

⇡

2 , & (c
i

, d
j

)=(x
i

, y
j

) for i, j = 0..n

2. A generic Riemann sum becomes

S(P
n

, f) =
X

i,j2[1,n]

f
�

i

n

⇡

2 ,
j

n

⇡

2

� �
i

n

⇡

2 � i�1
n

⇡

2

� �
j

n

⇡

2 � j�1
n

⇡

2

�
=

⇡

2

4n2

X
i,j2[1,n]

1
2 sin

�
i

n

⇡

2 +

j

n

⇡

2

�
3. Since sin(x+ y) = sin(x) cos(y) + cos(x) sin(y), we have

S(P
n

, f) = ⇡

2

8n2

X
i,j2[1,n]

⇥
sin

�
i

n

⇡

2

�
cos

�
j

n

⇡

2

�
+ cos

�
i

n

⇡

2

�
sin

�
j

n

⇡

2

�⇤
=

⇡

2

8n2

X
i,j2[1,n]

⇥
sin

�
i

n

⇡

2

�
cos

�
j

n

⇡

2

�⇤
+

X
i,j2[1,n]

⇥
cos

�
i

n

⇡

2

�
sin

�
j

n

⇡

2

�⇤
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A Sample (cont)

Example (cont)
4. Distribute the sums

S(P
n

, f) = ⇡

2

8n2

"
nX

i=1

sin

�
i

n

⇡

2

� nX
j=1

cos

�
j

n

⇡

2

�
+

nX
i=1

cos

�
i

n

⇡

2

� nX
j=1

sin

�
j

n

⇡

2

�#

= 2

⇡

2

8n2

nX
i=1

cos

�
i

n

⇡

2

� nX
j=1

sin

�
j

n

⇡

2

�
=

"
⇡

2n

nX
i=1

cos

�
i

n

⇡

2

�# ·
"

⇡

2n

nX
j=1

sin

�
j

n

⇡

2

�#

5. lim

n!1
⇡

2n

nX
j=1

T
�

j

n

⇡

2

�
=

Z
⇡/2

0

T (x) dx, so

lim

n!1
S(P

n

, f) =

Z
⇡/2

0

cos(x) dx ·
Z

⇡/2

0

sin(x) dx = 1

6. Whence
x

[0,⇡/2]⇥[0,⇡/2]

1
2 sin(x+ y) dA = 1
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Continuous Functions

Theorem (Continuous Functions Are Integrable)
If f is continuous on R = [a, b] ⇥ [c, d], then f is integrable on R.

Proof.
Let " > 0. Set A = area(R).

1. Since f is cont on R, then f is unif cont on R. Hence there is a
� > 0 s.t. whenever ~x1, ~x2 2 R with k ~x1 � ~x2k < �, then
|f( ~x1) � f( ~x2)| < ".

2. Choose a partition P s.t. kPk < �.

3. Then U(P, f) � L(P, f) =

X

i,j

M
ij

�x
i

�y
j

�
X

i,j

m
ij

�x
i

�y
j

. I.e.,

U(P, f) � L(P, f) =

X

i,j

(M
ij

� m
ij

)�A
ij

<
X

i,j

"�A
ij

= A "
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Bilinearity

Theorem (Bilinearity of Integration)
1. Let f1 and f2 be integrable on R, and c1 and c2 be constants.

Then
x

R

c1f1 ± c2f2 dA = c1
x

R

f1 dA ± c2
x

R

f2 dA

2. Let f be bounded on R = R1 + R2.
2.1 Then f is integrable on R iff f is integrable on R1 and R2.
2.2 If f is integrable on R, then

x

R

f dA =

x

R1

f dA+

x

R2

f dA

Proposition
Let f be integrable on R with m = min

R

f and M = max

R

f . Then

m · area(R) 
x

R

f dA  M · area(R)



MAT 5620: 93

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Iteration

Thinking Out Loud. . .
1. Fix x⇤. Suppose f(x⇤, y) is an integrable function of y. Define

g(x) =

Z
[c,d]

f(x, y) dy

Then integrate g to get Z
[a,b]

"Z
[c,d]

f(x, y) dy

#
dx

2. Fix y⇤. Suppose f(x, y⇤
) is an integrable function of x. Define

h(y) =

Z
[a,b]

f(x, y) dx

Then integrate h to get Z
[c,d]

"Z
[a,b]

f(x, y) dx

#
dy

How do these integrals relate to
s

R

f dA?
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Iteration and Guido Fubini

Theorem (Fubini (1910))
Let f be integrable on a rectangle R. If for each x, the function h(y) = f(x, y)

is integrable over y 2 [c, d], then g(x) =
R

d

c

f(x, y) dy is integrable for
x 2 [a, b], and

x

R

f dA =

Z
b

a

Z
d

c

f(x, y) dy

�
dx

Corollary
Let f be integrable on a rectangle R. If

1. h(y) = f(x, y) is integrable over y 2 [c, d], and

2. k(x) = f(x, y) is integrable over x 2 [a, b],

then
x

R

f dA =

Z
b

a

Z
d

c

f(x, y) dy

�
dx =

Z
d

c

Z
b

a

f(x, y) dx

�
dy
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Proving Fubini’s Theorem

Proof (sketch).
Let " > 0.

1. Find a partition P of [a, b]⇥ [c, d] where U(P, f)� L(P, f) < "

2. ‘Slice’ this partition into P1(x)⇥ P2(y).

3. Use U(P1, g)� L(P1, g) < U(P, f)� L(P, f) to show

g(x) =

Z
[c,d]

f(x, y)dy is integrable over [a, b].

4. Show L(P, f) 
Z
[a,b]

g dx  U(P, f)

5. Conclude
Z
[a,b]

g(x) dx =

x

R

f(x, y)dA

6. Use symmetry to have
Z
[c,d]

h(y) dy =

x

R

f(x, y)dA

Observe the doneness of the proof.
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Fubini Examples

Example (Good Function! Biscuit!)
Let N(x, y) = e�(x2+y

2) and R = R2.

1. Change to polar coordinates.
x

R

N(x, y) dA =

x

[0,1]⇥[0,2⇡]

N(r, ✓) dA

2. Apply Fubini’s thm two ways:

2.1
x

R

N(r, ✓) dA =

Z 2⇡

0

Z 1

0

e�r

2

r dr

�
d✓ =

Z 2⇡

0

1
2 d✓ = ⇡

2.2
x

R

e�x

2

e�y

2

dA=

Z 1

�1
e�y

2
Z 1

�1
e�x

2

dx

�
dy=

Z 1

�1
e�y

2

dy ·
Z 1

�1
e�x

2

dx

3. Whence
Z 1

�1
e�x

2

dx =

p
⇡. Whereupon

Z 1

�1

1p
2⇡

e�
1
2x

2

dx = 1.
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Fubini Examples II

Example (Bad Function! No Biscuit!)

Let f(x, y) =

x2 � y2

(x2
+ y2

)

2
on R = [0, 1] ⇥ [0, 1].

1.
Z 1

0

Z 1

0
f(x, y) dx

�
dy = �⇡

4

2.
Z 1

0

Z 1

0
f(x, y) dy

�
dx = +

⇡

4

3.
Z 1

0

Z 1

0
|f(x, y)| dy

�
dx = 1

So
x

R

f(x, y) dA does not exist
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The Leibniz Rule

Theorem (Leibniz Rule)
Suppose f has continuous partials on R = [a, b] ⇥ [c, d]. Set

g(x) =

Z
d

c

f(x, y) dy. Then g is differentiable on (a, b) and

d

dx
g(x) =

Z
d

c

@

@x
f(x, y) dx

Proof.
1. f has cont partials =) f is cont and differentiable on int(R)

2. Then f is integ., so for every fixed x⇤, f(x⇤, y) is integ. on [c, d]

3. Choose x 6= x⇤, then 9x0 between x and x⇤ s.t.

g(x) � g(x⇤
)

x � x⇤ =

Z
d

c

f(x, y) � f(x⇤, y)

x � x⇤ dy =

Z
f
x

(x0, y) dy

4. Take limits as x ! x⇤ to finish


