Camille Jordan’s Content

Definition (Jordan Content Zero)

A set S has Jordan content zero iff for each € > 0 there is a finite
collection R of rectangles R;; s.t.

e SC U Rl]
. area(R) =) _;;area(R;;) <e
A bounded set D is Jordan measurable iff 0D has Jordan content zero. |

e log spiral on [9.5297~1,9.5297] e unit disk
e Hilbert’s plane filling curve, space filling curve

Proposition
e Rectifiable curves have Jordan content zero.
e The union of sets of content zero has content zero.

v
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Jordan’s Extension

Theorem

If f is continuous on R = [a, b] X [c, d] except on a set of Jordan content zero,
then f is integrable on R.

o

Proof.

Since R is compact and f is cont, 3M > 0 s.t. |f(x,y)| < M on R.
For each R;; we see M;; — m;; < 2M.
Let S be the set of discontinuities of f. So S has content zero.

Lete > 0. Find P s.t. for the rect's covering S, the » ~ area(R;;) < ¢

o~ 0 p =

Divide the P into Ps and Ps where Ps contains the rectangles covering
S. ThenU(P) — L(P) = [U(Ps) + U(Ps)] — [L(Ps) + L(P3)].

Combine with 4: U(Ps) — L(Ps) < > (M;; — mi;)AA;; < 2Me

2

7. fis unif cont on Pg so refine P to obtain M;; — m;; < e on P’
8. Then Y (M —mij)AAi; <e» AAj; <eA

R..eP/ D




Bounded, Jordan-Measurable Regions

Proposition (Integral on a B’'nded, Jordan-Mble Set)

Let D be a bounded, Jordan-measurable region in R? and let f be
continuous on D. Define Xp(x) =1 forx € D and 0 for z ¢ D.
Suppose the rectangle R O D.

. HfdAéﬂfdeA

. If D is the region [a, b] x (x)] where o < 3, then
B(z)
fffdA // flx,y)dydz
a(x)
e If D is the region [a(y), B(y)] X [c,d] where o < 3, then

fffdA //f(j) flx,y)dzdy
a(y

v

MAT 5620: 97

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

Dirichlet’s Formula

Dirichlet C Fubini




Line Integrals

Definition (Line Integral)

If fis continuous on a region D containing a smooth curve C, then
the line integral of f along C'is

/Cfds = lim Y f(ci,di) Asg
k=1

Proposition
If C' has a smooth parametrization (x(t), y(t)) fort € [a,b], then

b
AjwzlfumMMS@ﬁ
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Line Integrals Are Linear

Proposition (Algebraic Properties)

1. /_Cfds:—/cfds

2. /fds:Z/ fds where C = |, C;
© =1 Ci

/Cfds
Examples

1. [, zydx + (2* 4+ y*)dy with C the unit circle in the 1st quadrant

3.

< ML where L = length(C) & M > max |f(z,y)].

2. [,z ds with C the unit circle in the 1st quadrant

3. [szydz + (2* + y*)dy with S being the unit square having the
vertex set [(1,0), (1,1), (0,1), (0,0)]




Let D be a simple region in R? with a positively-oriented, closed
boundary 0D. If F(z,y) = (M (z,y), N(x,y)) is a continuously
differentiable vector field on an open region containing D, then

]{ M dz + N dy = ([ (N — M,)dz dy
oD D

For D as above and a differentiable (n — 1)-form w, / w= / dw
oD D

For f and D as above, Area(D) = 1 ]{ xdy — yd.
oD
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A Planimeter




Proving Green’s Theorem

Proof.
. D ={(z,y):a<zx<bandgi(z) <y < g2(x)}. By linearity, NTS:

%Mda:——ij and %aDNdy:{)wa
1. NowﬂM _/ / M, dy dz.

2. The FToC gives fJ"M _/ [M(z, g2) — M(z, g1)|dz

D

3. Decompose 9D into D1 = {x,g1(x)}, D2 = {z =b,91(b) <y < g2(b)},
Ds = {x,92(x)}, and Dy = {x = a,g2(a) 2 y > g1(a)}

4. On D; and Dy, dz = 0,80 §,, = §, + ¢,

5. Then Mdaf;—/ M(t,gi(t)) dt—i—/ M(t, g2(t)) dt

/M (t, g1(t))—M(t, g2(t)) dt= — J"jM Aha! ) Mdo = —ijMy.

Il. Analogously, Ndy = ff Ny. O
oD =
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Forms of Green’s Theorem

Theorem
“Under suitable conditions,”
1. Mdx+ Ndy = 7{ F-Tds Circulation Thm
oD oD
2. de—Ndy:jé F-Nds Flux Thm
oD oD
3. Jj (M, + N,)dA = ff div(F)d Divergence Thm
4, f f (N, — M,)dA = ﬂ curl(F) dA Curl Thm
D D
div(v) =V -d and curl(v) =V x v




