Camille Jordan's Content

Jordan's Extension

Multiple Integration

Intro to Lebesgue Measure

Theorem

If *f* is continuous on $R = [a, b] \times [c, d]$ except on a set of Jordan content zero, then *f* is integrable on *R*.

Proof.

- 1. Since R is compact and f is cont, $\exists M > 0$ s.t. |f(x, y)| < M on R.
- 2. For each R_{ij} we see $M_{ij} m_{ij} < 2M$.

Functions of Two Variables

- 3. Let S be the set of discontinuities of f. So S has content zero.
- 4. Let $\varepsilon > 0$. Find *P* s.t. for the rect's covering *S*, the $\sum \operatorname{area}(R_{ij}) < \varepsilon$
- 5. Divide the *P* into P_S and $P_{\bar{S}}$ where P_S contains the rectangles covering *S*. Then $U(P) L(P) = [U(P_S) + U(P_{\bar{S}})] [L(P_S) + L(P_{\bar{S}})].$
- 6. Combine with 4: $U(P_S) L(P_S) \le \sum (M_{ij} m_{ij}) \Delta A_{ij} < 2M\varepsilon$
- 7. *f* is unif cont on $P_{\bar{S}}$ so refine *P* to obtain $M_{ij} m_{ij} < \varepsilon$ on *P'*
- 8. Then $\sum_{R_{ij} \in P'} (M_{ij} m_{ij}) \Delta A_{ij} < \varepsilon \sum \Delta A_{ij} < \varepsilon A$

Bounded, Jordan-Measurable Regions

Proposition (Integral on a B'nded, Jordan-Mble Set)

Let *D* be a bounded, Jordan-measurable region in \mathbb{R}^2 and let *f* be continuous on *D*. Define $\chi_D(x) = 1$ for $x \in D$ and 0 for $x \notin D$. Suppose the rectangle $R \supset D$.

•
$$\iint_D f \, dA \stackrel{\Delta}{=} \iint_R f \, \chi_D \, dA$$

• If *D* is the region $[a, b] \times [\alpha(x), \beta(x)]$ where $\alpha \leq \beta$, then

$$\iint_{D} f \, dA \stackrel{\Delta}{=} \int_{a}^{b} \int_{\alpha(x)}^{\beta(x)} f(x, y) \, dy \, dx$$

• If *D* is the region
$$[\alpha(y), \beta(y)] \times [c, d]$$
 where $\alpha \leq \beta$, then

$$\iint_{D} f \, dA \stackrel{\Delta}{=} \int_{c}^{d} \int_{\alpha(y)}^{\beta(y)} f(x, y) \, dx \, dy$$

Line Integrals

Definition (Line Integral)

If f is continuous on a region D containing a smooth curve C, then the *line integral of* f *along* C is

$$\int_C f \, ds = \lim_{n \to \infty} \sum_{k=1}^n f(c_i, d_i) \, \Delta s_i$$

Proposition

If *C* has a smooth parametrization (x(t), y(t)) for $t \in [a, b]$, then

$$\int_{C} f \, ds = \int_{a}^{b} f(x(t), y(t)) \, s'(t) \, dt$$
$$= \int_{a}^{b} f(x(t), y(t)) \, \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} \, dt$$

мат	5620	90
MAI	5020.	93

3. $\int_S xy \, dx + (x^2 + y^2) dy$ with *S* being the unit square having the vertex set [(1,0), (1,1), (0,1), (0,0)]

Green's Theorem

Theorem (Green's Theorem⁵)

Let *D* be a simple region in \mathbb{R}^2 with a positively-oriented, closed boundary ∂D . If $\vec{F}(x, y) = \langle M(x, y), N(x, y) \rangle$ is a continuously differentiable vector field on an open region containing *D*, then

$$\oint_{\partial D} M \, dx + N \, dy = \iint_{D} (N_x - M_y) dx \, dy$$

Theorem (Differential Forms Version)

For D as above and a differentiable (n-1)-form ω ,

 $\int_{\partial D} \omega = \int_D d\omega$

MAT 5620: 101

Corollary (Area of a Region)

F

for
$$f$$
 and D as above, $\operatorname{Area}(D) = \frac{1}{2} \oint_{\partial D} x \, dy - y \, dx$

⁵There are a number of equivalent forms of Green's Theorem.

<page-header><section-header><section-header>

Proving Green's Theorem

Proof.

Vector Calculus

1.
$$D = \{(x, y) : a \le x \le b \text{ and } g_1(x) \le y \le g_2(x)\}$$
. By linearity, NTS:
 $\oint_{\partial D} M \, dx = - \iint_D M_y$ and $\oint_{\partial D} N \, dy = \iint_D N_x$
1. Now $\iint_D M_y = \int_a^b \int_{g_1}^{g_2} M_y \, dy \, dx$.
2. The FToC gives $\iint_D M_y = \int_a^b [M(x, g_2) - M(x, g_1)] dx$
3. Decompose ∂D into $D_1 = \{x, g_1(x)\}, D_2 = \{x = b, g_1(b) \le y \le g_2(b)\}, D_3 = \{x, g_2(x)\}, \text{ and } D_4 = \{x = a, g_2(a) \ge y \ge g_1(a)\}$
4. On D_2 and D_4 , $dx = 0$, so $\oint_{\partial D} = \oint_{D_1} + \oint_{D_3}$
5. Then $\oint_{\partial D} M \, dx = \int_a^b M(t, g_1(t)) \, dt + \int_b^a M(t, g_2(t)) \, dt$
 $= \int_a^b M(t, g_1(t)) - M(t, g_2(t)) \, dt = -\iint_D M_y$. Aha! $\oint_{\partial D} M \, dx = -\iint_D M_y$.
II. Analogously, $\oint_{\partial D} N \, dy = \iint_D N_x$.

Forms of Green's Theorem

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

Theorem			
"Under suitable conditions,"			
1. $\oint_{\partial D} M dx + N dy = \oint_{\partial D} \vec{F} \cdot \vec{T} ds$	Circulation Thm		
2. $\oint_{\partial D} M dx - N dy = \oint_{\partial D} \vec{F} \cdot \vec{N} ds$	Flux Thm		
3. $\iint_{D} (M_x + N_y) dA = \iint_{D} \operatorname{div}(\vec{F}) dA$	Divergence Thm		
4. $\iint_{D} (N_x - M_y) dA = \iint_{D} \operatorname{curl}(\vec{F}) dA$	Curl Thm		
$\operatorname{div}(\vec{v}) = \nabla \cdot \vec{v}$ and $\operatorname{curl}(\vec{v}) = \nabla \times \vec{v}$			