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Introduction to Lebesgue Measure

Prelude
There were two problems with calculus:
there are functions where

• f(x) 6=
Z

f 0
(x) dx

• f(x) 6= d
dx

Z
f(x) dx

�
In his 1902 dissertation, “Intégrale, long-
ueur, aire,” Lebesgue wrote, “It thus
seems to be natural to search for a defi-
nition of the integral which makes integra-
tion the inverse operation of differentiation
in as large a range as possible.”

Henri Lebesgue's Mathematical Genealogy 
 (partial)

Lebesgue

Johan Bernoulli

Euler

1726

Lagrange

1754

Poisson

1754

Fourier

1800?

Dirichlet

1827

Chasles

1814

Liouville

18361827

d'Alembert

Laplace

?

1754

Darboux

1866

Catalan

1841

Cartan

1894

Goursat

1881

Picard

1877

Stieltjes

1886Borel

1893

Lie

1894

Bernstein

1904

Julia

1907

Weil

1928

Hermite

1886

Poincaré

1879

1841

1902
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What’s in a Measure

Goals
THE BESTmeasure would be a real-valued set functionµ that satisfies

1. µ(I) = length(I) where I is an interval
2. µ is translation invariant: µ(x + E) = µ(E) for any x 2 R
3. if {E

n

} is pairwise disjoint, then µ(

S
n

E
n

) =

P
n

µ(E
n

)

4. dom(µ) = P(R) (the power set of R)

THE BAD NEWS:⇢
continuum hypothesis

+ axiom choice

�
=) 1, 3, and 4 are incompatible

THE PLAN:

• Give up on 4. (cf. Vitali)
• 1. and 2. are nonnegotiable
• Weaken 3., then reclaim it
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Sigma Algebras

Definition
Sigma Algebra of Sets

Algebra: A collection of sets A is an algebra iff A is closed under
unions and complements.

�-Algebra: An algebra of sets A is a �-algebra iff A is closed under
countable unions.

Proposition
Let A be a nonempty algebra of sets of reals. Then

• ; and R 2 A.
• A is closed under intersection.

Let A be a nonempty �-algebra of sets of reals. Then
• A is closed under countable intersections.
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Sigma Samples

Examples
1. A = {;,R}

2. F = {F ⇢ R : F is finite or F c is finite}
2.1 F is an algebra, the co-finite algebra
2.2 F is not a �-algebra

For each r 2 Q, the set {r} 2 F . But
S

r2Q{r} = Q /2 F

3. Let A = {;, [�1, 1], (�1, �1) [ (1, 1),R}. Is A an algebra?

4. Any intersection of �-algebras is a �-algebra

5. Let B(R) be the smallest �-algebra containing all the open sets,
the Borel �-algebra.
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Outer Measure

Definition (Lebesgue Outer Measure)
Let E ⇢ R. Define the Lebesgue Outer Measure µ⇤ of E to be

µ⇤
(E) = inf

E⇢
S

In

X

n

`(I
n

),

the infimum of the sums of the lengths of open interval covers of E.

Proposition (Monotonicity)
If A ✓ B, then µ⇤

(A)  µ⇤
(B).

Proposition
If I is an interval, then µ⇤

(I) = `(I).
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Outer Measure of an Interval

Proof.
I. I is closed and bounded (compact). Then I = [a, b].

1. For any " > 0, [a, b] ⇢ (a� ", b+ "). So µ⇤
(I)  b� a+ 2". Since " is

arbitrary, µ⇤
(I)  b� a.

2. Let {I
n

} cover [a, b] with open intervals. There is a finite subcover for
[a, b]. Order the subcover so that consecutive intervals overlap. ThenX

N

`(I
k

) = (b1 � a1) + (b2 � a2) + · · ·+ (b
N

� a
N

)

RearrangeX
N

`(I
k

) = b
N

� (a
N

� b
N�1)� (a

N�1 � b
N�2)� · · ·� (a2 � b1)� a1

� b
N

� a1 > b� a

Whence µ⇤
(I) = b� a.
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Outer Measure of an Interval, II

Proof (cont).
II. Let I be any bounded interval and " > 0.

1. There is a closed interval J ⇢ I so that `(I)� " < `(J). Then

`(I)� " < `(J) = µ⇤
(J)  µ⇤

(I)  µ⇤
(

¯I) = `(¯I) = `(I)

III. Suppose I is infinite.

1. Then for each n, there is a closed interval J ⇢ I s.t. `(J) = n

2. Thence µ⇤
(I) � n for all n.

Aha! µ⇤
(I) = 1

Proposition
µ⇤

(Q) = 0

Proof.
Order Q as {r1, r2, . . . }. {I

n

= (r
n

� "/2n, r
n

+ "/2n)} covers Q
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Countable Subadditivity

Theorem (µ⇤ is Countably Subadditive)

Let {E
n

} be a countable set sequence in R. Then µ⇤

 [
n

E
n

!

X
n

µ⇤
(E

n

)

Proof.
I. If µ⇤

(E
n

) = 1 for any n, then done.
II. Let " > 0

1. For each n find a cover {I
n,j

}
n2N such that

P
j2N

`(I
n,j

) < µ⇤
(E

n

) +

"

2n

2. Then {I
n,j

}
n,j2N covers E =

S
n

E
n

.

3. Whereupon

µ⇤
(E) 

X
n,j2N

`(I
n,j

) =

X
n2N

24X
j2N

`(I
n,j

)

35
<
X
n2N

h
µ⇤

(E
n

) +

"
2

n

i
=

X
n2N

[µ⇤
(E

n

)] + "
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Open Holding & Lebesgue’s Measure

Corollary
Given E ✓ R and " > 0, there is an open set O ◆ E s.t.

µ⇤
(E)  µ⇤

(O)  µ⇤
(E) + "

Definition (Carathéodory’s Condition)
A set E is Lebesgue measurable iff for every (test) set A,

µ⇤
(A) = µ⇤

(A \ E) + µ⇤
(A \ Ec

)

Let M be the collection of all Lebesgue measurable sets.

Corollary
For any A and E,

µ⇤
(A) = µ⇤�

(A \ E) [ (A \ Ec

)

�
 µ⇤

(A \ E) + µ⇤
(A \ Ec

)
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Much Ado About Nothing

Theorem
If µ⇤

(E) = 0, then E 2 M; i.e., E is measurable.

Proof.
Given the previous corollary, we need only show that

µ⇤
(A \ E) + µ⇤

(A \ Ec

)  µ⇤
(A)

1. Since A \ E ⇢ E, then µ⇤
(A \ E)  µ⇤

(E) = 0.
2. Since A \ Ec ⇢ A, then µ⇤

(A \ Ec

)  µ⇤
(A).

Whence µ⇤
(A \ E) + µ⇤

(A \ Ec

)  0 + µ⇤
(A) = µ⇤

(A).

Corollary
µ⇤

(Q) = 0 =) Q 2 M
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Unions Work

Theorem
A finite union of measurable sets is measurable.

Proof.
Let E1 and E2 2 M. Let A be a test set.

1. Use A \ Ec

1 as a test set for E2 which is measurable. Thence

µ⇤
(A \ Ec

1) = µ⇤
((A \ Ec

1) \ E2) + µ⇤
((A \ Ec

1) \ Ec

2)

2. Note A \ (E1 [ E2) = (A \ E1) [ (A \ E2 \ Ec

1). Whereupon

µ⇤
(A \ (E1 [E2)) + µ⇤

(A \ (E1 [E2)
c

)

= µ⇤
(A \ (E1 [ E2)) + µ⇤

(A \ (Ec

1 \ Ec

2))

 ⇥µ⇤
(A \ E1) + µ⇤

(A \ E2 \ Ec

1)
⇤
+ µ⇤

(A \ Ec

1 \ Ec

2)

 µ⇤
(A \ E1) +

⇥
µ⇤

(A \ Ec

1 \ E2) + µ⇤
(A \ Ec

1 \ Ec

2)
⇤

= µ⇤
(A \ E1) + µ⇤

(A \ Ec

1)

= µ⇤
(A)
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Countable Unions Work

Theorem
The countable union of measurable sets is measurable.

Proof.
Let E

k

2 M and E =

S
n

E
n

. Choose a test set A.
We need to show µ⇤

(A \ E) + µ⇤
(A \ Ec

)  µ⇤
(A).

1. Set F
n

=

S
n E

k

and F =

S1 E
k

= E. Define G1 = E1,
G2 = E2 � E1, . . . , G

k

= E
k

�
S

k�1 E
j

, and G =

S
G

k

. Then

(i) G
i

\ G
j

= ;, (i 6= j) (ii) F
n

=

n[
G

k

(iii) F = G = E

2. Test F
n

with A to obtain µ⇤
(A) = µ⇤

(A \ F
n

) + µ⇤
(A \ F c

n

)

3. Test G
n

with A \ F
n

to obtain

µ⇤
(A \ F

n

) = µ⇤
((A \ F

n

) \ G
n

) + µ⇤
((A \ F

n

) \ Gc

n

)

= µ⇤
(A \ G

n

) + µ⇤
(A \ F

n�1)
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Countable Unions Work, II

Proof.
4. Iterate µ⇤

(A \ F
n

) = µ⇤
(A \G

n

) + µ⇤
(A \ F

n�1) from 3 to have

µ⇤
(A \ F

n

) =

nX
k=1

µ⇤
(A \G

k

)

5. Since F
n

✓ F , then F c ✓ F c

n

for all n, then

µ⇤
(A \ F c

n

) � µ⇤
(A \ F c

)

6. Whence
µ⇤

(A) �
nX

k=1

µ⇤
(A \G

k

) + µ⇤
(A \ F c

)

The summation is increasing & bounded, so convergent.

7. However
1X

k=1

µ⇤
(A \G

k

) � µ⇤

 1[
k=1

(A \G
k

)

!
= µ⇤

(A \ F )

Aha! µ⇤
(A) � µ⇤

(A \ F ) + µ⇤
(A \ F c

)
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Everything Works

Corollary
The collection of Lebesgue measurable sets M is a �-algebra.

Corollary
The Borel sets are measurable. (There are measurable, non-Borel
sets.) B(R) $ M $ P(R)

Definition (Lebesgue Measure)
Lebesgue measure µ is µ⇤ restricted to M. So µ :M ! [0, 1].

Definition (Almost Everywhere)
A property P holds almost everywhere (a.e.) iff µ

�
{x : ¬P (x)}

�
= 0.
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The Return of Additivity
Theorem
Let {E

n

} be a countable (finite or infinite) sequence of pairwise disjoint sets
in M. Then

µ

 1[
k=1

E
k

!
=

1X
k=1

µ(E
k

)

Proof.
I. n is finite.

1. For n = 1, X
2.
�S

n

k=1 Ek

� \ E
n

= E
n

and
�S

n

k=1 Ek

� \ Ec

n

=

S
n�1
k=1 E

k

3. µ
�S

n

k=1 Ek

�
= µ

�⇥S
n

k=1 Ek

⇤ \ E
n

�
+ µ

�⇥S
n

k=1 Ek

⇤ \ Ec

n

�
= µ(E

n

) + µ
�S

n�1
k=1 E

k

�
= µ(E

n

) +

P
n�1
k=1 µ(E

k

) =

P
n

k=1 µ(Ek

)

II. n is infinite.
1.
S

n

k=1 Ek

⇢ S1
k=1 Ek

=) µ
�S

n

k=1 Ek

�
=

P
n

k=1 µ(Ek

)  µ
�S1

k=1 Ek

�
2. A bnded & incr sum converges. Thus

P1
k=1 µ(Ek

)  µ
�S1

k=1 Ek

�
3. Subadditivity finishes the proof.

2
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Adding an Example

Example

Set E
n

=

⇣
n�1
n

, n

n+1

⌘
for n = 1..1.

1. The E
n

are pairwise disjoint.

2. µ(E
n

) = `(E
n

) =

n

n+1 � n�1
n

=

1
n(n+1)

3. µ

✓ 1S
n=1

E
n

◆
=

1P
n=1

µ(E
n

) =

1P
n=1

1
n(n+1) =

1P
n=1

h
1
n

� 1
n+1

i

Whence µ

✓ 1S
n=1

E
n

◆
= 1.

NOTA BENE:
1S

n=1
E

n

=(0, 1) �
�

1
2 , 2

3 , 3
4 , . . .

 
. Hence

1S
n=1

E
n

=(0, 1) a.e.
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Matryoshka

Theorem
If {E

n

} is a seq of nested, measurable sets with µ(E1) < 1, then

µ

 1\
n=1

E
n

!
= lim

n!1
µ(E

n

)

Proof.

1. Set E =

1T
k=1

E
k

. Set F
k

= E
k

� E
k+1. The F

k

are pairwise disjoint.

2. Since
1S

k=1
F
k

= E1�E, then µ(E1�E) =

1P
k=1

µ(F
k

) =

1P
k=1

µ(E
k

� E
k+1).

3. If A ⇢ B, then µ(A�B) = µ(A)� µ(B). Apply to the formula above.

4. µ(E1)� µ(E) =

1P
k=1

µ(E
k

)� µ(E
k+1) = µ(E1)� lim

k!1
µ(E

k

)

Since µ(E1) is finite, we’re done.

MAT 5620: 122

Vector Calculus Functions of Two Variables Multiple Integration Intro to Lebesgue Measure

The Cantor Set

Cantor Sets7

I. Constructing C

1. Set C0 = [0, 1]

2. Set C1 = C0 � (

1
3 ,

2
3 )

3. Set C2 = C1 � (

1
32
, 2
32
)� (

7
32
, 8
32
)

4. Set C3 = C2 � (

1
33
, 2
33
)� (

7
33
, 8
33
)� (

19
33
, 20
33
)� (

25
33
, 26
33
)

5. Let C =

T
C

i

II. Properties of C
1. µ(C0) = 1, µ(C1) = 2/3,

µ(C2) = 4/9, µ(C3) = 8/27,
. . . So µ(C

n

) =

2
3µ(Cn�1) =

2n

3n

Whence µ(C) = 0.
2. C is uncountable
3. C is perfect

4. C is nowhere dense

5. C is compact

6. C is totally disconnected

7. (8i) @C
i

⇢ C

8. (8i) 1
4 /2 @C

i

, but 1
4 2 C

7Cantor gave the set in a footnote to show “perfect” 6⇢ “everywhere dense”.
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Not So Strange After All

Theorem
Let E ✓ R and let " > 0. TFAE:

1. E is measurable
2. There is an open set O � E s.t. µ⇤

(O � E) < "

3. There is a closed set F ⇢ E s.t. µ⇤
(E � F ) < "

Proposition
Let S and T be measurable subsets of R. Then

µ(S [ T ) + µ(S \ T ) = µ(S) + µ(T )
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Functionally Measurable

Theorem (Measurability Conditions for Functions)
Let f :D ! R1 for some D 2 M. TFAE

1. For each r 2 R, the set f�1
�
(r, 1)

�
is measurable.

2. For each r 2 R, the set f�1
�
[r, 1)

�
is measurable.

3. For each r 2 R, the set f�1
�
(�1, r)

�
is measurable.

4. For each r 2 R, the set f�1
�
(�1, r]

�
is measurable.

Proof.
1 ) 2: {x | f(x) � r} =

T
n

{x | f(x) > r � 1/n}

2 ) 3: {x | f(x) < r} = D � {x | f(x) � r}

3 ) 4: {x | f(x)  r} =

T
n

{x | f(x) < r + 1/n}

4 ) 1: {x | f(x) > r} = D � {x | f(x)  r}
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The Measurably Functional

Corollary
If f satisfies any measurability condition, then {x | f(x) = r} is measurable
for each r.

Definition (Measurable Function)
If a function f :D ! R1 has measurable domain D and satisfies any of the
measurability conditions, then f is measurable.

Definition
Step function: � : [a, b] ! R1 is a step function if there is a partition a = x0

< x1 < · · · < x
n

= b s.t. � is constant on each interval I
k

= (x
k�1, xk

), then

�(x) =
nX

k=1

a
k

�
Ik (x)

Simple function: A function  with range {a1, a2, . . . , an

} where each set
 �1

(a
k

) is measurable is a simple function.
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Simply Stepping

Proposition
Step functions and simple functions are measurable

Theorem (Algebra of Measurable Functions)
Let f and g be measurable on a common domain D, and let c 2 R. Then

1. f + c

2. c · f
3. f ± g

4. f2

5. f · g

are all measurable.

Proof.
• X
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Sequencing

Theorem
Let {f

n

} be a sequence of measurable functions on a common domain D.
Then

1. sup {f1, . . . , fn}

2. inf {f1, . . . , fn}

3. sup

n!1
f
n

4. inf

n!1
f
n

5. lim sup

n!1
f
n

6. lim inf

n!1
f
n

are all measurable.

Proof.

1. Set f = {f1, . . . , fn}. Then {f(x) > r} =

n[
k=1

{f
k

(x) > r}.

3. Set F = sup

n

f
n

. Then {F (x) > r} =

1[
k=1

{f
k

(x) > r}.

5. Set � = lim sup

n

f
n

. Then lim sup

n!1
f
n

= inf

n


sup

k�n

f
k

�
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Zeroing

Theorem
If f is measurable and f = g a.e., then g is measurable.

Definition (Converence Almost Everywhere)
A sequence {f

n

} converges to f almost everywhere, written as f
n

! f a.e.,
iff µ

⇣
{x :f

n

(x) 6! f(x)}
⌘
= 0.

Theorem
Let f : [a, b] ! R. Then f is measurable iff there is a seq. of simple functions
{ 

n

} converging to f a.e.
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A Simple Proof

Proof.
()) Wolog f � 0.

1. Define A
n,k

=

�
x
��k�1

2n  f(x) < k

2n

 
for k = 1..(n · 2

n

) and

A0,n = [a, b] �
n2n[

k=1

A
n,k

2. Set  
n

(x) = n�
A0,n(x) +

n2nX

k=1

k � 1

2

n

· �
An,k(x)

3. Then
3.1  1   2  · · ·
3.2 If 0  f(x)  n, then |f �  

n

| < 2

�n

3.3 lim

n

 = f a.e.

(() X
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Integration

We began by looking at two examples of integration problems.
• The Riemann integral over [0, 1] of a function with infinitely many

discontinuities didn’t exist even though the points of discontinuity
formed a set of measure zero.
(The points of discontinuity formed a dense set in [0, 1].)

• The limit of a sequence of Riemann integrable functions did not
equal the integral of the limit function of the sequence.
(Each function had area 1/2, but the limit of the sequence was the
zero function.)

We will look at Riemann integration, then Riemann-Stieltjes
integration, and last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy, Gauge,
Perron, etc. See the list given in the “See also” section of Integrals on
Mathworld.
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Riemann Integral

Definition
• A partition P of [a, b] is a finite set of points such that

P = {a = x0 < x1 < · · · < x
n�1 < x

n

= b}.
• Set M

i

= sup f(x) on [x
i�1, xi

]. The upper sum of f on [a, b] w.r.t. P is

U(P, f) =
nX

i=1

M
i

·�x
i

• The upper Riemann integral of f over [a, b] isZ̄
b

a

f(x) dx = inf

P
U(P, f)

Exercise
1. Define the lower sum L(P, f) and the lower integral

R
¯

b

a

f .
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Definitely a Riemann Integral

Definition
If
R̄

b

a

f(x) dx =

R
¯
b

a

f(x) dx, then f is Riemann integrable and is written asR
b

a

f(x) dx and f 2 R on [a, b].

Proposition
A function f is Riemann integrable on [a, b] if and only if for every ✏ > 0 there
is a partition P of [a, b] such that

U(P, f)� L(P, f) < ✏.

Theorem
If f is continuous on [a, b], then f 2 R on [a, b].

Theorem
If f is bounded on [a, b]with only finitely many points of discontinuity, then
f 2 R on [a, b].
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Properties of Riemann Integrals

Proposition
Let f and g 2 R on [a, b] and c 2 R. Then

• R
b

a

cf dx = c
R
b

a

f dx

• R
b

a

(f + g) dx =

R
b

a

f dx +

R
b

a

g dx

• f · g 2 R

• if f  g, then
R
b

a

f dx 
R
b

a

g dx

•
���
R
b

a

f dx
��� 

R
b

a

|f | dx

• Define F (x) =

R
x

a

f(t) dt. Then F is continuous and, if f is
continuous at x0, then F 0

(x0) = f(x0)

• If F 0
= f on [a, b], then

R
b

a

f(x) dx = F (b) � F (a)
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Riemann Integrated Exercises

Exercises
1. If

R
b

a

|f(x)| dx = 0, then f = 0.

2. Show why
R 1
0 �Q(x) dx does not exist.

3. Define

S
n

(x) =

n+1X

k=1

✓
k � 1

k
· �

[

k�1
k ,

k
k+1 )

(x)

◆
+

n

n + 1

�
[

n+1
n+2 ,1]

(x).

3.1 How many discontinuities does S
n

have?
3.2 Prove that S 0

n

(x) = 0 a.e.
3.3 Calculate

R 1

0
S
n

(x) dx.
3.4 What is S1?
3.5 Does

R 1

0
S1(x) dx exist?

(See an animated graph of S
N

.)
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Riemann-Stieltjes Integral

Definition
• Let ↵(x) be a monotonically increasing function on [a, b]. Set

�↵
i

= ↵(x
i

) � ↵(x
i�1).

• Set M
i

= sup f(x) on [x
i�1, xi

]. The upper sum of f on [a, b]
w.r.t. ↵ and P is

U(P, f,↵) =

nX

i=1

M
i

· �↵
i

• The upper Riemann-Stieltjes integral of f over [a, b] w.r.t. ↵ isZ̄
b

a

f(x) d↵(x) = inf

P
U(P, f,↵)

Exercise
1. Define the lower sum L(P, f,↵) and lower integral

R

¯
b

a

fd↵.
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Definitely a Riemann-Stieltjes Integral

Definition
If
R̄

b

a

f d↵ =

R
¯
b

a

f d↵, then f is Riemann-Stieltjes integrable and is written asR
b

a

f(x) d↵(x) and f 2 R(↵) on [a, b].

Proposition
A function f is Riemann-Stieltjes integrable w.r.t. ↵ on [a, b] iff for every ✏ > 0

there is a partition P of [a, b] such that
U(P, f,↵)� L(P, f,↵) < ✏.

Theorem
If f is continuous on [a, b], then f 2 R(↵) on [a, b].

Theorem
If f is bounded on [a, b]with only finitely many points of discontinuity and ↵ is
continuous at each of f ’s discontinuities, then f 2 R(↵) on [a, b].
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Properties of Riemann-Stieltjes Integrals

Proposition
Let f and g 2 R(↵) and in � on [a, b] and c 2 R. Then

• R
b

a

cf d↵ = c
R
b

a

f d↵ and
R
b

a

f d(c↵) = c
R
b

a

f d↵

• R
b

a

(f + g) d↵ =

R
b

a

f d↵+

R
b

a

g d↵ and
R
b

a

f d(↵+ �) =

R
b

a

f d↵+

R
b

a

f d�

• f · g 2 R(↵)

• if f  g, then
R
b

a

f d↵ 
R
b

a

g d↵

•
���
R
b

a

f d↵
��� 

R
b

a

|f | d↵

• Suppose that ↵0 2 R and f is bounded. Then f 2 R(↵) iff
f↵0 2 R and Z

b

a

f d↵ =

Z
b

a

f · ↵0 dx
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Riemann-Stieltjes Integrals and Series

Proposition
If f is continuous at c 2 (a, b) and ↵(x) = r for a  x < c and ↵(x) = s
for c < x  b, then

Z
b

a

f d↵ = f(c) (↵(c+) � ↵(c�))

= f(c) (s � r)

Proposition
Let ↵ = bxc, the greatest integer function. If f is continuous on [0, b],
then Z

b

0
f(x) dbxc =

bbcX

k=1

f(k)
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Riemann-Stieltjes Integrated Exercises

Exercises
1.

R 1
0 x dx2

2.
R
⇡/2
0 cos(x) d sin(x)

3.
R 5/2
0 x d(x � bxc)

4.
R 1

�1 exd|x|

5.
R 3/2

�3/2 exdbxc

6.
R 1

�1 exdbxc

7. Set H to be the Heaviside function; i.e.,

H(x) =

(
0 x  0

1 otherwise
.

Show that, if f is continuous at 0, then
Z +1

�1
f(x) dH(x) = f(0).
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Lebesgue Integral

We start with simple functions.

Definition
A function has finite support if it vanishes outside a finite interval.

Definition
Let � be a measurable simple function with finite support. If

�(x) =

nX

i=1

a
i

�
Ai(x) is a representation of �, then

Z
�(x) dx =

nX

i=1

a
i

· µ(A
i

)

Definition

If E is a measurable set, then
Z

E

� =

Z
� · �

E

.
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Integral Linearity

Proposition
If � and  are measurable simple functions with finite support and

a, b 2 R, then
Z

(a�+ b ) = a

Z
�+ b

Z
 . Further,

if �   a.e., then
Z
� 

Z
 .

Proof (sketch).

I. Let � =

NX
↵
i

�
Ai and  =

MX
�
i

�
Bi . Then show a�+ b can be

written as a�+ b =

KX
(a↵

ki + b�
kj )�Ek for the properly chosen E

k

.

Set A0 and B0 to be zero sets of � and  . (Take
{E

k

: k = 0..K} = {A
j

\ B
k

: j = 0..N, k = 0..M}.)

II. Use the definition to show
R
 �

R
� =

R
( � �) �

R
0 = 0.
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Steps to the Lebesgue Integral

Proposition
Let f be bounded on E 2 M with µ(E) < 1. Then f is measurable iff

inf

f 

Z
E

 = sup

f��

Z
E

�

for all simple functions � and  .

Proof.
I. Suppose f is bounded by M. Define

E
k

=

⇢
x :

k � 1

n
M < f(x)  k

n
M

�
, �n  k  n

The E
k

are measurable, disjoint, and have union E. Set

 
n

(x) =
M
n

nX
�n

k �
Ek (x), �

n

(x) =
M
n

nX
�n

(k � 1)�
Ek (x)
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SLI (cont)

(proof cont).
Then �

n

(x)  f(x)   (x), and so

•
inf

Z

E

 
Z

E

 
n

=

M

n

nX

k=�n

k µ(E
k

)

•
sup

Z

E

� �
Z

E

�
n

=

M

n

nX

k=�n

(k � 1) µ(E
k

)

Thus 0  inf

R
E

 � sup

R
E

�  M

n

µ(E). Since n is arbitrary, equality
holds.
II. Suppose that inf

R
E

 = sup

R
E

�. Choose �
n

and  
n

so that
�
n

 f   
n

and
R
E

( 
n

� �
n

) < 1
n

. The functions  ⇤
= inf  

n

and
�⇤

= sup�
n

are measurable and �⇤  f   ⇤. The set
� = {x : �⇤

(x) <  ⇤
(x)} has measure 0. Thus �⇤

=  ⇤ almost
everywhere, so �⇤

= f a.e. Hence f is measurable.
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Example Steps

Example

-4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4

-4

-3

-2

-1

1

2

3

4
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Defining the Lebesgue Integral

Definition
If f is a bounded measurable function on a measurable set E with
m(E) < 1, then Z

E

f = inf

 �f

Z

E

 

for all simple functions  � f.

Proposition
Let f be a bounded function defined on E = [a, b]. If f is Riemann
integrable on [a, b], then f is measurable on [a, b] and

Z

E

f =

Z
b

a

f(x) dx;

the Riemann integral of f equals the Lebesgue integral of f.
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Properties of the Lebesgue Integral

Proposition
If f and g are measurable on E, a set of finite measure, then

•
Z

E

(↵f + �g) = ↵

Z

E

f + �

Z

E

g

• if f = g a.e., then
Z

E

f =

Z

E

g

• if f  g a.e., then
Z

E

f 
Z

E

g

•
����
Z

E

f

���� 
Z

E

|f |

• if a  f  b, then a · µ(E) 
Z

E

f  b · µ(E)

• if A \ B = ;, then
Z

A[B

f =

Z

A

f +

Z

B

f
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Lebesgue Integral Examples

Examples

1. Let T (x) =

(
1
q

x =

p

q

2 Q
0 otherwise

)
. Then

Z

[0,1]
T =

Z 1

0
T (x) dx.

2. Let �Q(x) =

(
1 x 2 Q
0 otherwise

)
. Then

Z

[0,1]
�Q 6=

Z 1

0
�Q(x)dx.

3. Define

f
n

(x) =

n+1X

k=1

✓
k � 1

k
· �

[

k�1
k ,

k
k+1 )

(x)

◆
+

n

n + 1

�
[

n+1
n+2 ,1]

(x).

Then
3.1 f

n

is a step function, hence integrable
3.2 f 0

n

(x) = 0 a.e.

3.3 1

4


Z
[0,1]

f
n

=

Z 1

0

f
n

(x) dx <
3

8
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Extending the Integral Definition

Definition
Let f be a nonnegative measurable function defined on a measurable
set E. Define Z

E

f = sup

hf

Z

E

h

where h is a bounded measurable function with finite support.

Proposition
If f and g are nonnegative measurable functions, then

•
Z

E

c f = c

Z

E

f for c > 0

•
Z

E

f + g =

Z

E

f +

Z

E

g

• If f  g a.e., then
Z

E

f 
Z

E

g
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General Lebesgue’s Integral

Definition
Set f+

(x) = max{f(x), 0} and f�
(x) = max{�f(x), 0}. Then f = f+ � f�

and |f | = f+
+ f�. A measurable function f is integrable over E iff both f+

and f� are integrable over E, and then
Z
E

f =

Z
E

f+ �
Z
E

f�.

Proposition
Let f and g be integrable over E and let c 2 R. Then

1.
Z
E

cf = c

Z
E

f

2.
Z
E

f + g =

Z
E

f +

Z
E

g

3. if f  g a.e., then
Z
E

f 
Z
E

g

4. if A, B are disjoint m’ble subsets of E,

Z
A[B

f =

Z
A

f +

Z
B

f
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Convergence Theorems

Theorem (Bounded Convergence Theorem)
Let {f

n

: E ! R} be a sequence of measurable functions converging to f
with m(E) < 1. If there is a uniform bound M for all f

n

, thenZ
E

lim

n

f
n

= lim

n

Z
E

f
n

Proof (sketch).
Let ✏ > 0.

1. f
n

converges “almost uniformly;” i.e., 9A,N s.t. m(A) <
✏

4M
and, for

n > N, x 2 E �A =) |f
n

(x)� f(x)|  ✏
2m(E)

.

2.
����Z

E

f
n

�
Z
E

f

���� = ����Z
E

f
n

� f

����  Z
E

|f
n

� f | =
✓Z

E�A

+

Z
A

◆
|f

n

� f |

3.
Z
E�A

|f
n

� f |+
Z
A

|f
n

|+ |f |  ✏
2m(E)

·m(E) + 2M · ✏
4M

= ✏
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Lebesgue’s Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)
Let {f

n

: E ! R} be a sequence of measurable functions converging a.e. on
E with m(E) < 1. If there is an integrable function g on E such that |f

n

|  g
then Z

E

lim

n

f
n

= lim

n

Z
E

f
n

Lemma
Under the conditions of the DCT, set g

n

= sup

k�n

{f
n

, f
n+1, . . . } and

h
n

= inf

k�n

{f
n

, f
n+1, . . . }. Then g

n

and h
n

are integrable and

lim g
n

= f = limh
n

a.e.

Proof of DCT (sketch).
• Both g

n

and h
n

are monotone and converging. Apply MCT.
• h

n

 f
n

 g
n

=) R
E

h
n

 R
E

f
n

 R
E

g
n

.
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Increasing the Convergence

Theorem (Fatou’s Lemma)
If {f

n

} is a sequence of measurable functions converging to f a.e. on E, thenZ
E

lim

n

f
n

 lim inf

n

Z
E

f
n

Theorem (Monotone Convergence Theorem)
If {f

n

} is an increasing sequence of nonnegative measurable functions
converging to f, then Z

lim

n

f
n

= lim

n

Z
f
n

Corollary (Beppo Levi Theorem (cf.))
If {f

n

} is a sequence of nonnegative measurable functions, thenZ 1X
n=1

f
n

=

1X
n=1

Z
f
n
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Sidebar: Littlewood’s Three Principles

John Edensor Littlewood said,
The extent of knowledge required is nothing so great as
sometimes supposed. There are three principles, roughly
expressible in the following terms:

• every measurable set is nearly a finite union of intervals;
• every measurable function is nearly continuous;
• every convergent sequence of measurable functions is

nearly uniformly convergent.
Most of the results of analysis are fairly intuitive applications
of these ideas.

From Lectures on the Theory of Functions, Oxford, 1944, p. 26.
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Extensions of Convergence

The sequence f
n

converges to f . . .

Definition (Convergence Almost Everywhere)
almost everywhere if m({x : f

n

(x) 9 f(x)}) = 0.

Definition (Convergence Almost Uniformly)
almost uniformly on E if, for any ✏ > 0, there is a set A ⇢ E with m(A) < ✏ so
that f

n

converges uniformly on E �A.

Definition (Convergence in Measure)
in measure if, for any ✏ > 0, lim

n!1
m ({x : |f

n

(x)� f(x)| � ✏})=0.

Definition (Convergence in Mean (of order p > 1))

in mean if lim

n!1
kf

n

� fk
p

= lim

n!1

Z
E

|f � f
n

|p
�1/p

= 0
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Integrated Exercises

Exercises
1. Prove: If f is integrable on E, then |f | is integrable on E.

2. Prove: If f is integrable over E, then
����
Z

E

f

���� 
Z

E

|f |.

3. True or False: If |f | is integrable over E, then f is integrable over
E.

4. Let f be integrable over E. For any ✏ > 0, there is a simple

(resp. step) function � (resp.  ) such that
Z

E

|f � �| < ✏.

5. For n = k + 2

⌫ , 0  k < 2

⌫ , define f
n

= �[k2�⌫
,(k+1)2�⌫ ].

5.1 Show that f
n

does not converge for any x 2 [0, 1].
5.2 Show that f

n

does not converge a.e. on [0, 1].
5.3 Show that f

n

does not converge almost uniformly on [0, 1].
5.4 Show that f

n

! 0 in measure.
5.5 Show that f

n

! 0 in mean (of order 2).
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