Introduction to Lebesgue Measure

Prelude

There were two problems with calculus:
there are functions where

¢ @) # [F(@)do

¢ 1) # 4 | [1)ad]

In his 1902 dissertation, “Intégrale, long-
ueur, aire,” Lebesgue wrote, “It thus
seems to be natural to search for a defi-
nition of the integral which makes integra-
tion the inverse operation of differentiation
in as large a range as possible.”
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Henri Lebesgue's Mathematical Genealogy
(partial)
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Intro to Lebesgue Measure

What’s in a Measure

Goals

THE BEST measure would be a real-valued set function . that satisfies
= length(I) where [ is an interval

1. pu(I)

2
3.
4. dom(u) =

THE BAD NEWS:

continuum hypothesis
+ axiom choice
THE PLAN:

e Give up on 4. (cf. Vitali)
e 1. and 2. are nonnegotiable
e Weaken 3., then reclaim it

. W is translation invariant. p(x + E)
if {£,,} is pairwise disjoint, then u(l,, Er) =
P(R) (the power set of R)

—> 1, 3, and 4 are incompatible

= u(F) forany z € R




Sigma Algebras

Definition
Sigma Algebra of Sets

Algebra: A collection of sets A is an algebra iff A is closed under
unions and complements.

o-Algebra: An algebra of sets A is a o-algebra iff A is closed under
countable unions.

o

Proposition

Let A be a nonempty algebra of sets of reals. Then
e ) andR € A.
e A is closed under intersection.

Let A be a nonempty o-algebra of sets of reals. Then
e A js closed under countable intersections.

v
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Sigma Samples

1. A={0,R}
2. F={F CR: Fisfinite or F° is finite}
2.1 Fis an algebra, the co-finite algebra
2.2 Fis not a o-algebra
Foreachr € Q, the set {r} € F. ButU,o{r} =Q ¢ F
3. Let A={0,[-1,1],(—00,—-1) U (1,00),R}. Is A an algebra?

4. Any intersection of o-algebras is a o-algebra

5. Let B(R) be the smallest o-algebra containing all the open sets,
the Borel o-algebra.




Quter Measure

Definition (Lebesgue Outer Measure)
Let £ C R. Define the Lebesgue Outer Measure 1* of E to be

*(E) = inf o(I,),
W (E) EéIll_JInn (In)

the infimum of the sums of the lengths of open interval covers of E.

Proposition (Monotonicity)
If AC B, then pu*(A) < u*(B).

Proposition
If I is an interval, then p*(I) = ¢(1).

MAT 5620: 109

Intro to Lebesgue Measure

QOuter Measure of an Interval

Proof.
l. I is closed and bounded (compact). Then I = [a, b].

1. Foranye >0, [a,b] C (a —e,b+¢). Sou*(I) < b—a+ 2e. Sincecis
arbitrary, u*(I) < b — a.

2. Let {I,} cover [a, b] with open intervals. There is a finite subcover for
[a, b]. Order the subcover so that consecutive intervals overlap. Then

> U(Ix) = (br —a1) + (b2 — az) + -+ + (b — an)

Rearrange
ZE(II@) =by — (an —bn-1) — (an-1 —bN-2) — -+ — (a2 —b1) — a1
N

>by —a1 >b—a

Whence p*(I) =b — a.



Il. Let I be any bounded interval and ¢ > 0.
1. There is a closed interval J C I so that ¢(I) — e < £(J). Then
UI) —e < €(J) = p"(J) < p™(I) < p(I) = £(I) = £(I)

lll. Suppose I is infinite.
1. Then for each n, there is a closed interval J C I s.t. 4(J) =n
2. Thence p*(I) > n for all n.

Aha! p*(I) = o0

n(Q) =0 I
Order Q as {ri,72,...}. {In = (rn — /2", r, +€/2")} covers Q O I
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I If u*(E,) = oo for any n, then done.
Il. Lete >0

1. For each n find a cover {1, j}nen such that >~ ¢(I, ;) < p*(En) + 5=

JjEN
2. Then {I, ;}n jen coOvers E =, En.
3. Whereupon
PE)S Y UIny) =D D tIny)
n,j€N neN [ jeN

<Y | E)+ ] =2 B+

neN neN O




Given E C R ande > 0, there is an open set O D E s.t.
p(E) < p™(0) < p™(E) +e

A set E is Lebesgue measurable iff for every (test) set A,
p*(A) = (AN E) + p* (AN E°)
Let 97t be the collection of all Lebesgue measurable sets.

Forany A and E,
p*(A) = p* (ANE) U (AN E%)) < p*(AN B) + p"(AN E°)
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Ifu*(E) =0, then E € I, i.e., £ is measurable.

Given the previous corollary, we need only show that
pH(ANE) + i (AN E°) < p*(A)

1. Since ANE C E,then p*(ANE) < u*(F)=0.
2. Since ANE° C A, then p*(AN E°) < u*(A).
Whence p*(ANE) + p* (AN E°) <0+ p*(A4) = p*(A).

p(@Q=0= Qem l




Unions Work

Theorem

A finite union of measurable sets is measurable.

Proof.

Let F4 and E> € M. Let A be a test set.
1. Use AN EY as a test set for E> which is measurable. Thence

p (AN EY) =p ((ANE7) N E2) + p ((AN EY) N E3)
2. Note AN (E1UE>) =(ANE1)U (AN E: N EYT). Whereupon
p (AN (ELU E2)) + p" (AN (B1U Ez)°)
(AN(E1UE2))+ p" (AN (Ef N EY))
p (AN Er) +p" (AN Ex N EY)] + p* (AN Ef N E3)

"(ANE1) + [W(ANETNE2) + p* (AN Ef N E3)]
"(ANE1) 4+ p (AN EY)
"(4)

IA
— t

IN
=

T E

O
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Countable Unions Work

Theorem

The countable union of measurable sets is measurable.

Proof.

Let £, e M and E =, E,,. Choose a test set A.
We need to show p*(ANE) + p* (AN E°) < p*(A).

1. Set F, =J" Ey and F = | J™ E, = E. Define G, = Fj,
Gy=FEy—Ey,...,Gr=E,— " " E;,and G = |JG,. Then
()GiNG,; =0, (i #7) (ii)Fn:LnJGk i F =G =F
2. Test F,, with A to obtain p*(A) = p*(ANE,) + u* (AN FS)
3. Test G,, with AN F,, to obtain

p(ANE,) =p (ANE,)NG,) +p* ((ANF,) NGY)
=p (ANG,) +p (AN F,_1)




Countable Unions Work, Il

Proof.
4. lterate p*(ANF,) =p (ANG,) + p* (AN F,_1) from 3 to have

“(ANF,) ZN (AN Gy)

5. Since F,, C F, then ' C FY for all n, then
p(ANFD) > p* (AN F°)
6. Whence n
p(A) > p (ANGy) + p (AN FF)
k=1
The summation is increasing & bounded, so convergent.

7. However

o)

> W(ANGY) ZN*<U(AﬂGk:)> =W (ANF)

k=1
Aha! 1*(A) > (AN F) 4 p* (AN F°) O
Intro to Lebesgue Measure
Everything Works
Corollary

The collection of Lebesgue measurable sets Ot is a o-algebra.

Corollary
The Borel sets are measurable. (There are measurable, non-Borel

sets.) B(R) ; M ; P(R)

Definition (Lebesgue Measure)
Lebesgue measure i is p* restricted to M. So p: M — [0, o).

Definition (Almost Everywhere)

A property P holds almost everywhere (a.e.) iff u({z : ~P(z)}) = 0.




The Return of Additivity

Theorem
Let {E,} be a countable (finite or infinite) sequence of pairwise disjoint sets

in M. Then oo 00
u(U Ek) = u(Ex)
k=1 k=1
Proof.
I. n is finite.
1. Forn=1, v

2. (UZ=1 Ek) NE, = E, and (UZ=1 Ek) NE;, = UZ;ll B,
3. wUs=n Br) = n([Usmy ] 0 En) + p([Us= Bx] 0 B7)
= u(Bn) + p(UpZ; Br) = w(Bn) + X720 p(Ex) = 35, #(Er)
Il. n is infinite.
1. UZ:l Ey C Uiil By = U(UZ:1 Ek) = ZZ:1 p(EBr) < ,U(U;Oﬂ Ek)
2. Abnded & incr sum converges. Thus 377, w(Ex) < p(Upe; Ex)
3. Subadditivity finishes the proof. 0

v
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Adding an Example

Set E, —( ;1,n+1)forn—1 .00.

1. The E,, are pairwise disjoint.

Whence M( fj En> = 1.

n=1

NoTA BENE: JE,=(0,1) — {3,2,3,...}. Hence UE =(0,1) a.e

n=1




If{E,} is a seq of nested, measurable sets with ,(E,) < oo, then

u(ﬂ En> = lim u(En)

n=1

—

. Set E = () Ex. Set Fi, = Ex, — Ex41. The Fy, are pairwise disjoint.
k=1

2. Since kf_lek — E,—E, then u(E, — E) :ki u(Fi) :2 1W(Ex — Ert1).
3. IfAC Lg then u(A — B) = u(A) — u(B). ;‘pply to the ;ormula above.
4. p(B) — p(E) = 3 p(Bx) — p(Bien) = p(By) = Jim ()

Since u(E1) is finite, we're done. O
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|. Constructing C
1. Set Cp = [0, 1]

2. SetC1 =Co— (5,3

3. SetCy = C1 — (37, 32) — (32, 32)

4. SetCs = Oy = (G ) — G ) — (38 30 - (5. 39
5 LetC=NC;

Il. Properties of C'
1. u(Co) =1, u(C1) = 2/3,
u(Cz) = 4/9, p(Cs) = 8/27,
.80 pu(Chr) = Z2p(Crr) = 2
Whence p(C) = 0.

2. Cis uncountable
3. C is perfect

C is nowhere dense

C is compact

C is totally disconnected
(Vi) 0C; C C

(Vi) 1 ¢ 0Ci, but 3 € C

SRS -




Not So Strange After All

Theorem

Let E CR andlete > 0. TFAE:
1. E is measurable
2. ThereisanopensetO D E s.t. u*(O — F) <«
3. ThereisaclosedsetFF C E s.t. u*(E—F)<e

Proposition
Let S andT be measurable subsets of R. Then

WS UT) + p(SNT) = u(S) + p(T)
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Functionally Measurable

Theorem (Measurability Conditions for Functions)
Let f:D — R, forsome D € M. TFAE
1. Foreachr € R, the set f~*((r,00)) is measurable.
[

2. Foreachr c R, the set f~!
3. Foreachr € R, the set f~!
4. Foreachr c R, the set f~!

r,00)) is measurable.

AAAA

(=
(=

o0
oo, 1)) is measurable.
oo, r]) is measurable.

Proof.

1=2: {z|f(z) 27} =N, {z]f(z) >r—1/n}

2=3: {z|f(z) <r}=D—{z|f(z) =7}

3=4: {z|f(z) <r} =N {z]f(z) <r+1/n}

4=1: {z|f(z) >r} =D —{z|f(z) <r} [




If f satisfies any measurability condition, then {x | f(x) = r} is measurable
for each r.

If a function f: D — R, has measurable domain D and satisfies any of the
measurability conditions, then f is measurable.

Step function: ¢:[a,b] — R is a step function if there is a partition a = xo
<m <---<xm, =bsl ¢isconstant on each interval I, = (xx_1,zx), then

¢(z) =Y arXr, (v)

Simple function: A function v with range {a1, a2, ..., a,} where each set
¥~ (ax) is measurable is a simple function.
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Step functions and simple functions are measurable

Let f and g be measurable on a common domain D, and let c € R. Then

1. f+c¢ 3. f£g S. f-g
2. ¢c-f 4. f?

are all measurable.




Let{f.} be a sequence of measurable functions on a common domain D.

Then
1. sup{fi,..., fn} 3. sup fn 5. limsup f»
n— oo n— oo
2. inf {f1,..., fn} 4. nlilgo In 6. l%lrri)gffn

are all measurable.

1. Set f={fi,..., fa}. Then {f(z) > r} = | J{fe(z) > r}.

3. Set F =sup,, fn. Then {F(x) >r} = G{fk(ac) > r}.

k=1
5. Set & = limsup,, f». Then limsup f, = inf [Sup fk]

n— oo k>n
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If f is measurable and f = g a.e., then g is measurable.

A sequence {f,} converges to f almost everywhere, written as f,, — f a.e.,

ff 1 ({: ful@) # F(@)}) = 0.

Let f:[a,b] — R. Then f is measurable iff there is a seq. of simple functions
{n} converging to f a.e.



A Simple Proof

Proof.
(=) Wolog f > 0.
1. Define 4, = {z |52 < f(z) < & } for k = 1..(n - 2") and

n2"

Ao =[a,0] — | ) Ak
k=1

n2"™
k—1
2. Set Y (z) =nXa,,(z) + Z on XA,k (T)
k=1
3. Then
3.1 Y1 <o < -

32 If0 < f(x) <n,then |f — | < 27"
3.3 lim, ¢y = f a.e.

(<) V DJ
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Integration

We began by looking at two examples of integration problems.

e The Riemann integral over [0, 1] of a function with infinitely many
discontinuities didn’t exist even though the points of discontinuity
formed a set of measure zero.

(The points of discontinuity formed a dense set in [0, 1].)

e The limit of a sequence of Riemann integrable functions did not
equal the integral of the limit function of the sequence.
(Each function had area !/, but the limit of the sequence was the
zero function.)

We will look at Riemann integration, then Riemann-Stieltjes
integration, and last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy, Gauge,
Perron, etc. See the list given in the “See also” section of /ntegrals on
Mathworld.



e A partition P of [a, b] is a finite set of points such that
'P={a=.’130<.’131 < - < Tp-1 <.’13n:b}.

e Set M; =sup f(z) on [x;—1,x;]. The upper sumof f on [a,b] w.rt. P is

UP,f)=>_ M- Az
=1

e The upper Riemann integral of f over [a, b] is

/a f(x)dr = i%f U(P, f)

1. Define the lower sum L(P, f) and the lower integral [ bf.
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If [*f(x)dw = [ f(z)dz, then f is Riemann integrable and is written as
J? f(z)dz and f € %R on [a,b].

A function f is Riemann integrable on [a, b] if and only if for every e > 0 there
is a partition P of [a, b] such that

UP,f)—L(P, f) <e.

If f is continuous on [a, b, then f € R on [a, b].

If f is bounded on [a, b]with only finitely many points of discontinuity, then
feRonla,b.




Properties of Riemann Integrals

Proposition

Let f and g € R on [a,b] and ¢ € R. Then
o f;cfdx:cf;fdx
o [N(f+g)de=["fdz+ [’ gdz
* frgeR

iff <g, thenf;fdng;gdx

J2 fda| < f” f|da

Define F(z) = [ f(t)dt. Then F is continuous and, if f is
contlnuous at xg, then F'(xq) = f(xo)

If F/ = f ona,b], then [ f(z)dx = F(b) — F(a)
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Riemann Integrated Exercises

Exercises
1. If [*|f(x)| dz = 0, then f = 0.
2. Show why fo xo(x) dz does not exist.

3. Define
n+1
Sn(a:) = Z (% X[ ﬁ)( )) + Lx[n—}—l 1](56)
k=1

3.1 How many discontinuities does S,, have?
3.2 Prove that S, (z) =0 a.e.

3.3 Calculate [, Sy (x) dz.

3.4 Whatis So ?

3.5 Does [ So(x) dz exist?

(See an an/mated graph of Sn.)




Riemann-Stieltjes Integral

Definition
e Let a(z) be a monotonically increasing function on [a, b]. Set
Aa; = az;) — a(x;—1).
o Set M; = sup f(x) on [z;_1,x;]. The upper sum of f on [a, b]
w.rt. o and P is

U(P, f,« ZM - Aoy

e The upper Riemann-Stieltjes integral of f over [a,b] w.r.t. v is
b

/ f(x)da(x) = i%f U(P, f,«)

Exercise
1. Define the lower sum L(P, f,«) and lower integral [ fda.
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Definitely a Riemann-Stieltjes Integral

Definition
If fbf do = ffjf da, then f is Riemann-Stieltjes integrable and is written as
f f(z z)and f € R(«a) on [a,b].

Proposition

A function f is Riemann-Stieltjes integrable w.r.t. o on [a, b] iff for every e > 0
there is a partition P of [a, b] such that

U(P,f,a)—L(P,f,a) <e€

Theorem
If f is continuous on [a, b], then f € R(«) on [a, b].

Theorem

If f is bounded on [a, b]with only finitely many points of discontinuity and « is
continuous at each of f’s discontinuities, then f € R(«) on [a, b].



Properties of Riemann-Stieltjes Integrals

Proposition
Let f and g € R(«) and in B on [a,b] and ¢ € R. Then
. f;cfdoz:cf;fdoz and fffd(ca):cf;fda
3 f;(f+g)da:f;fda+f;gdoz and
JJ fdla+B) = [; fda+ [ fdB
e [-9€R(a)
o iff <g, thenf;fdagf:gda

[; fda| < [} 11| da

e Suppose that o' € R and f is bounded. Then f € R(«) iff

fa' € R and . .
/ fda:/ f-ddx
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Riemann-Stieltjes Integrals and Series

Proposition

If f is continuous at c € (a,b) and a(x) =r fora <z < canda(z)=s
forc < xz < b, then

b
/ f do= £(¢) (edet) — efe=))
= #(0) (s =)

Proposition
Let o = |z |, the greatest integer function. If f is continuous on [0, b],
then 1b]

/0 f@)dlz) =Y f(k)



Riemann-Stieltjes Integrated Exercises

Exercises

1. ﬁ}xdxz 4. [ end)x]
2. [T/ cos(x) dsin(x) 5. [°7, evd|x)
3. [P zd(x— |z)) 6. [! evd|z]

7. Set H to be the Heaviside function; i.e.,

H(x){o <0

1 otherwise

Show that, if f is continuous at 0, then

+oo
/ f(z) dH(z) = £(0).

— OO

MAT 5620: 139

Intro to Lebesgue Measure

Lebesgue Integral

We start with simple functions.

Definition

A function has finite support if it vanishes outside a finite interval.

Definition
Let ¢ be a measurable simple function with finite support. If

Z aix 4, (x) is a representation of ¢, then

/qzﬁ(x) dr = iai (A

Definition

If £ is a measurable set, then / O = /gb “XE-
E




Integral Linearity

Proposition
If ¢ and ¢y are measurable simple functions with finite support and

a,beR,then/(aqurbw):a/chrb/w. Further,
if¢ < a.e., then/gzbg/w.

Proof (sketch).

N M
l.Let¢ => aixa, and ¢ = > Bixs,. Then show a¢ + by can be
K

written as a¢ + by = Z(ao"fi + bBx, ) xE, for the properly chosen Ej.
Set Ay and By to be zero sets of ¢ and 1. (Take
{Er:k=0.K}={A;NBy:j=0.N,k=0..M}.)

Il. Use the definition to show [« — [¢ = [(¢» — ¢) > [0 =0. O
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Steps to the Lebesgue Integral

Proposition
Let f be bounded on E € M with u(F) < co. Then f is measurable iff

inf = su
ot o =su [ o

for all simple functions ¢ and ).

Proof.
|. Suppose f is bounded by M. Define

Ek:{x:k;1M<f(x)§§M}, —n<k<n

The E} are measurable, disjoint, and have union E. Set

Yn(@) = S kxm (), dale) = o S (k= 1) x5, (2)

n

. =




SLI (cont)

(proof cont).
Then ¢, (z) < f(z) < ¢(z), and so

-inf/Ews/E%:% S ku(Ey)
k=—n

cap o> [ o= 20 3 -1 utm

Thus 0 < inf [, ¢ —sup [, ¢ < 2 u(E). Since n is arbitrary, equality
holds.

Il. Suppose that inf [, 1 = sup [, ¢. Choose ¢,, and ¢, so that

¢n < f < and [, (v, — ¢n) < L. The functions ¢* = inf ¢, and

¢* = sup ¢,, are measurable and ¢* < f < ¢*. The set

A ={x:¢*(x) <¢*(x)} has measure 0. Thus ¢* = y* almost
everywhere, so ¢* = f a.e. Hence f is measurable. O

v
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Example Steps

ooy = dsinge L/
M=t 7
|55 foob2a+1| <l —+
Hknx)= 1 . | /
U I /
o =
2T TN\ (nx)= 7 2 kH{knx
/ N =
/ ANIE
Pnx) =" 2 (k-1yH(k.n.x)
—f— AN k= L
, /
re \ 1
\
# 312 2.4 1.6 -0.8 0 08 1/6 2] 32
\
- \ in
/ \
/
-+ \ iy an
N\
\\ /
N //
/
/
+
W




Defining the Lebesgue Integral

Definition
If fis a bounded measurable function on a measurable set £ with

m(F) < oo, then
/f: inf/¢
E v>2fJE

for all simple functions ¢ > f.

Proposition

Let f be a bounded function defined on E = [a,b]. If f is Riemann
integrable on [a, b, then f is measurable on [a, b] and

/Efz/abf(w)dw;

the Riemann integral of f equals the Lebesgue integral of f.

MAT 5620: 145

Intro to Lebesgue Measure

Properties of the Lebesgue Integral

Proposition
If f and g are measurable on E, a set of finite measure, then

-/JE(awaﬁg):a/EfﬂLﬂ/Eg
iff:ga.e.,then/Ef:/Eg
iffgga.e.,then/EfS/Eg

[al< [

ifa < f <b, thena-u(E)g/Efgb-u(E)

if AN B = (), then f:/f+/f
AUB A B




Lebesgue Integral Examples

1 P 1
1. LetT(z) = < ¢ T _EQ .Then/ T:/ T(z)dx
0 otherwise [0,1] 0

1 z€Q / /1
2. Let = . Then d
xo(z) { 0 e e} [0,1]XQ # i xo(z)dz

3. Define "
) = 3 (5 Xt @) + X @
k=1
Then

3.1 f, is a step function, hence integrable
3.2 f)(xr)=0a.e.

1 ! 3
33 i< fi=/ fu@de<?®
4 [0,1] 0 8

v
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Extending the Integral Definition

Definition
Let f be a nonnegative measurable function defined on a measurable

set E. Define
1=z [ n

where h is a bounded measurable functlon with finite support.

Proposition
If f and g are nonnegative measurable functions, then

./ch:c/Efforc>0
°/Ef+g=/Ef+/Eg

. Iffgga.e.,then/fé/g
E E




General Lebesgue’s Integral

Definition

Set fT(z) = max{f(z),0} and f~(z) = max{—f(x),0}. Then f = f* — f~
and |f| = fT + f~. A measurable function f is integrable over E iff both f*

and f~ are integrable over E, and then/ f:/ f*—/ .
E E E

Proposition
Let f and g be integrable over E and let c € R. Then

./ch:c/Ef
-/Ef+g=/Ef+[Eg

. iffgga.e.,then/ fg/g
E E
. if A, B are disjoint m’ble subsets of E, = / [+ / f
A B

AUB

—

N

A O
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Convergence Theorems

Theorem (Bounded Convergence Theorem)

Let{f. : E — R} be a sequence of measurable functions converging to f
with m(E) < oo. If there is a uniform bound M for all f,,, then

/limfn:hm fn
E " " JE

Proof (sketch).
Lete > 0.
1. fn converges “almost uniformly;” i.e., 3A, N s.t. m(A) < ﬁ and, for
n>N,z€E—A = |fu(z)— f(2) c

< s
/Efn—/Ef /Efn—f‘é/Elfn—f|=(/]E_A+A)|fn—f|
3. [ M= a1+ [ 1514111 <

€ €
m(E) +2M - -5 =
o om(E) B+ aM €

2.




Lebesgue’s Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)

Let{f, : E — R} be a sequence of measurable functions converging a.e. on
E withm(FE) < oco. If there is an integrable function g on E such that |f.| < g

then
/ lim f,, = lim fn
E " n JE

Lemma
Under the conditions of the DCT, set g, = sup {fn, fn+1,-..} and
k>n

hyn = gr>1f {fn, fn+1,...}. Then g, and h, are integrable and
lim g, = f=limh, a.e.

Proof of DCT (sketch).

e Both g,, and h,, are monotone and converging. Apply MCT.
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Increasing the Convergence

Theorem (Fatou’'s Lemma)

If{fn} is a sequence of measurable functions converging to f a.e. on E, then

/ lim f, <lim inf/ fn
E T n E

Theorem (Monotone Convergence Theorem)

If{fn} is an increasing sequence of nonnegative measurable functions

converging to f, then
/limfn = lim/fn

Corollary (Eeppo Levi Theorem (cf.))

If{fn} is a sequence of nonnegative measurable functions, then




Sidebar: Littlewood’s Three Principles

John Edensor Littlewood said,

The extent of knowledge required is nothing so great as
sometimes supposed. There are three principles, roughly
expressible in the following terms:

e every measurable set is nearly a finite union of intervals;

e every measurable function is nearly continuous;

e every convergent sequence of measurable functions is
nearly uniformly convergent.

Most of the results of analysis are fairly intuitive applications
of these ideas.

From Lectures on the Theory of Functions, Oxford, 1944, p. 26.
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Extensions of Convergence

The sequence f, convergesto f ...

Definition (Convergence Almost Everywhere)
almost everywhere it m({x : fn(z) » f(z)}) = 0.

Definition (Convergence Almost Uniformly)

almost uniformly on E if, for any € > 0, there is a set A C E with m(A) < € so
that f,, converges uniformly on £ — A.

Definition (Convergence in Measure)

in measure if, for any € > 0, lim m ({z : |fn(x) — f(z)| > €})=0.

Definition (Convergence in Mean (of order p > 1))

1/p
inmeanif lim | f, — fll, = lim {/ \f—fn|p} =0
n— 0o n— oo E




Integrated Exercises

Exercises
1. Prove: If f is integrable on E, then |f| is integrable on E.

[ o< [1n

3. True or False: If | f| is integrable over E, then f is integrable over
E.

4. Let f be integrable over E. For any € > 0, there is a simple

2. Prove: If f is integrable over E, then

(resp. step) function ¢ (resp. ) such that / If — o] <e.
E

5. Forn=Fk+2",0 <k <2, define f, = X[pa—v (k+1)2-+]-
5.1 Show that f, does not converge for any xz € [0, 1].
5.2 Show that f, does not converge a.e. on [0, 1].
5.3 Show that f,, does not converge almost uniformly on [0, 1].
5.4 Show that f,, — 0 in measure.
5.5 Show that f,, — 0 in mean (of order 2).
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