Introduction to Lebesgue Measure

Prelude

There were two problems with calculus: there are functions where

•
$$f(x) \neq \int f'(x) dx$$

• $f(x) \neq \frac{d}{dx} \left[\int f(x) dx \right]$

In his 1902 dissertation, "Intégrale, longueur, aire," Lebesgue wrote, "It thus seems to be natural to search for a definition of the integral which makes integration the inverse operation of differentiation in as large a range as possible."

Johan Bernoulli
Johan Bernoulli
Johan Bernoulli
1726
Euler
1754 ?
Lagrange Laplace
\top
1800? 1754 1754
Fourier Poisson
1827 1827 1814 1836
Dirichlet Chasles Liouville
/1866 1841
Lie Darboux Catalan
1894 1894 1877 1893 1881 1841
1074 1077 1075 1001 1041
Cartan Picard Borel 1886 Goursat Hermite
1907 1928 1904 1902 1886 1879
tlia Weil Bernstein Lebesgue Stieltjes Poincaré
tlia Weil Bernstein Lebesgue Stieltjes Poincaré
iiii kernstein Leoesgue Suerijes Poincare
Henri Lebesgue's Mathematical Genealogy
Henri Lebesgue's Mathematical Genealogy

MAT 5620: 105

Vector Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measure

What's in a Measure

Goals

THE BEST *measure* would be a real-valued set function μ that satisfies

- 1. $\mu(I) = \text{length}(I)$ where I is an interval
- 2. μ is *translation invariant*: $\mu(x + E) = \mu(E)$ for any $x \in \mathbb{R}$
- 3. if $\{E_n\}$ is pairwise disjoint, then $\mu(\bigcup_n E_n) = \sum_n \mu(E_n)$
- 4. $\operatorname{dom}(\mu) = \mathcal{P}(\mathbb{R})$ (the power set of \mathbb{R})

THE BAD NEWS:

 $\left\{ \begin{array}{c} \textit{continuum hypothesis} \\ + \textit{ axiom choice} \end{array} \right\} \implies 1, 3, \text{ and } 4 \text{ are incompatible}$

THE PLAN:

- Give up on 4. (cf. Vitali)
- 1. and 2. are nonnegotiable
- Weaken 3., then reclaim it

Sigma Algebras

Outer Measure

Definition (Lebesgue Outer Measure)

Let $E \subset \mathbb{R}$. Define the *Lebesgue Outer Measure* μ^* of E to be

$$u^*(E) = \inf_{E \subset \bigcup I_n} \sum_n \ell(I_n),$$

the infimum of the sums of the lengths of open interval covers of E.

Proposition (Monotonicity)

If $A \subseteq B$, then $\mu^*(A) \le \mu^*(B)$.

Proposition

If I is an interval, then $\mu^*(I) = \ell(I)$.

MAT 5620: 109

Intro to Lebesgue Measure

Outer Measure of an Interval

Multiple Integration

Proof.

I. *I* is closed and bounded (compact). Then I = [a, b].

Functions of Two Variables

- 1. For any $\varepsilon > 0$, $[a, b] \subset (a \varepsilon, b + \varepsilon)$. So $\mu^*(I) \le b a + 2\varepsilon$. Since ε is arbitrary, $\mu^*(I) \le b a$.
- 2. Let $\{I_n\}$ cover [a, b] with open intervals. There is a finite subcover for [a, b]. Order the subcover so that consecutive intervals overlap. Then

$$\sum_{N} \ell(I_k) = (b_1 - a_1) + (b_2 - a_2) + \dots + (b_N - a_N)$$

Rearrange

$$\sum_{N} \ell(I_k) = b_N - (a_N - b_{N-1}) - (a_{N-1} - b_{N-2}) - \dots - (a_2 - b_1) - a_1$$

$$\geq b_N - a_1 > b - a$$

Whence $\mu^*(I) = b - a$.

Outer Measure of an Interval, II

Open Holding & Lebesgue's Measure

Given $E \subseteq \mathbb{R}$ and $\varepsilon > 0$, there is an open set $O \supseteq E$ s.t. $\mu^*(E) \le \mu^*(O) \le \mu^*(E) + \varepsilon$

Definition (Carathéodory's Condition)

A set E is Lebesgue measurable iff for every (test) set A,

$$\mu^{*}(A) = \mu^{*}(A \cap E) + \mu^{*}(A \cap E^{c})$$

Let ${\mathfrak M}$ be the collection of all Lebesgue measurable sets.

Corollary

For any A and E,

 $\mu^*(A) = \mu^*((A \cap E) \cup (A \cap E^c)) \le \mu^*(A \cap E) + \mu^*(A \cap E^c)$

MAT 5620: 113

Unions Work

Theorem

A finite union of measurable sets is measurable.

Proof.

Vector Calculus

Functions of Two Variables

Multiple Integration

Intro to Lebesgue Measure

Countable Unions Work

Theorem

The countable union of measurable sets is measurable.

Proof.

Let $E_k \in \mathfrak{M}$ and $E = \bigcup_n E_n$. Choose a test set A. We need to show $\mu^*(A \cap E) + \mu^*(A \cap E^c) \leq \mu^*(A)$.

- 1. Set $F_n = \bigcup^n E_k$ and $F = \bigcup^\infty E_k = E$. Define $G_1 = E_1$, $G_2 = E_2 - E_1, \dots, G_k = E_k - \bigcup^{k-1} E_j$, and $G = \bigcup G_k$. Then (i) $G_i \cap G_j = \emptyset$, $(i \neq j)$ (ii) $F_n = \bigcup G_k$ (iii) F = G = E
- 2. Test F_n with A to obtain $\mu^*(A) = \mu^*(A \cap F_n) + \mu^*(A \cap F_n^c)$
- **3**. Test G_n with $A \cap F_n$ to obtain

$$\mu^*(A \cap F_n) = \mu^*((A \cap F_n) \cap G_n) + \mu^*((A \cap F_n) \cap G_n^c)$$

= $\mu^*(A \cap G_n) + \mu^*(A \cap F_{n-1})$

Countable Unions Work, II

Proof.

4. Iterate $\mu^*(A \cap F_n) = \mu^*(A \cap G_n) + \mu^*(A \cap F_{n-1})$ from 3 to have

$$\mu^*(A \cap F_n) = \sum_{k=1}^n \mu^*(A \cap G_k)$$

5. Since $F_n \subseteq F$, then $F^c \subseteq F_n^c$ for all n, then

$$\mu^*(A \cap F_n^c) \ge \mu^*(A \cap F^c)$$

6. Whence

$$\mu^*(A) \ge \sum_{k=1}^n \mu^*(A \cap G_k) + \mu^*(A \cap F^c)$$

The summation is increasing & bounded, so convergent.

7. However

$$\sum_{k=1}^{\infty} \mu^*(A \cap G_k) \ge \mu^*\left(\bigcup_{k=1}^{\infty} (A \cap G_k)\right) = \mu^*(A \cap F)$$

Aha! $\mu^*(A) \ge \mu^*(A \cap F) + \mu^*(A \cap F^c)$

мат	5620:	117
	0020.	

Intro to Lebesgue Measure

Functions of Two Variables Multiple Integration Everything Works

Corollary

The collection of Lebesgue measurable sets \mathfrak{M} is a σ -algebra.

Corollary

The Borel sets are measurable. (There are measurable, non-Borel sets.) $\mathcal{B}(\mathbb{R}) \subsetneqq \mathfrak{M} \subsetneqq \mathcal{P}(\mathbb{R})$

Definition (Lebesgue Measure)

Lebesgue measure μ is μ^* restricted to \mathfrak{M} . So $\mu: \mathfrak{M} \to [0, \infty]$.

Definition (Almost Everywhere)

A property *P* holds *almost everywhere* (a.e.) iff $\mu(\{x : \neg P(x)\}) = 0$.

The Return of Additivity

Theorem

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k)$$

Proof.

I. n is finite.

- 1. For n = 1, \checkmark
- 2. $\left(\bigcup_{k=1}^{n} E_k\right) \cap E_n = E_n$ and $\left(\bigcup_{k=1}^{n} E_k\right) \cap E_n^c = \bigcup_{k=1}^{n-1} E_k$

3.
$$\mu(\bigcup_{k=1}^{n} E_k) = \mu([\bigcup_{k=1}^{n} E_k] \cap E_n) + \mu([\bigcup_{k=1}^{n} E_k] \cap E_n^c)$$

= $\mu(E_n) + \mu(\bigcup_{k=1}^{n-1} E_k) = \mu(E_n) + \sum_{k=1}^{n-1} \mu(E_k) = \sum_{k=1}^{n} \mu(E_k)$

II. n is infinite.

- 1. $\bigcup_{k=1}^{n} E_k \subset \bigcup_{k=1}^{\infty} E_k \implies \mu \left(\bigcup_{k=1}^{n} E_k \right) = \sum_{k=1}^{n} \mu(E_k) \le \mu \left(\bigcup_{k=1}^{\infty} E_k \right)$
- 2. A bided & incr sum converges. Thus $\sum_{k=1}^{\infty} \mu(E_k) \leq \mu(\bigcup_{k=1}^{\infty} E_k)$
- 3. Subadditivity finishes the proof.

Functions of Two Variables

MAT 5620: 119

Intro to Lebesgue Measure

Adding an Example

Multiple Integration

Example

Vector Calculus

Set
$$E_n = \left(\frac{n-1}{n}, \frac{n}{n+1}\right)$$
 for $n = 1..\infty$

1. The E_n are pairwise disjoint.

2.
$$\mu(E_n) = \ell(E_n) = \frac{n}{n+1} - \frac{n-1}{n} = \frac{1}{n(n+1)}$$

3. $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n) = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left[\frac{1}{n} - \frac{1}{n+1}\right]$
Whence $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = 1$.

NOTA BENE: $\bigcup_{n=1}^{\infty} E_n = (0,1) - \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots \right\}$. Hence $\bigcup_{n=1}^{\infty} E_n = (0,1)$ *a.e.*

Matryoshka

Theorem

If $\{E_n\}$ is a seq of nested, measurable sets with $\mu(E_1) < \infty$, then

$$\mu\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n)$$

Proof.

1. Set $E = \bigcap_{k=1}^{\infty} E_k$. Set $F_k = E_k - E_{k+1}$. The F_k are pairwise disjoint.

2. Since
$$\bigcup_{k=1}^{\infty} F_k = E_1 - E$$
, then $\mu(E_1 - E) = \sum_{k=1}^{\infty} \mu(F_k) = \sum_{k=1}^{\infty} \mu(E_k - E_{k+1})$.

3. If
$$A \subset B$$
, then $\mu(A - B) = \mu(A) - \mu(B)$. Apply to the formula above.

4.
$$\mu(E_1) - \mu(E) = \sum_{k=1}^{\infty} \mu(E_k) - \mu(E_{k+1}) = \mu(E_1) - \lim_{k \to \infty} \mu(E_k)$$

Since $\mu(E_1)$ is finite, we're done.

ctor Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measu
	The C	antor Set	
Cantor	Sets ⁷		
I. Constru	cting C		
1. Set C	$C_0 = [0,1]$		
2. Set C	$C_1 = C_0 - (\frac{1}{3}, \frac{2}{3})$		
3. Set C	$C_2 = C_1 - \left(\frac{1}{3^2}, \frac{2}{3^2}\right) - \left(\frac{7}{3^2}, \frac{2}{3^2}\right)$	$(\frac{8}{3^2})$	
4. Set C	$C_3 = C_2 - \left(\frac{1}{3^3}, \frac{2}{3^3}\right) - \left(\frac{7}{3^3}, \frac{2}{3^3}\right)$	$\left(\frac{8}{3^3}\right) - \left(\frac{19}{3^3}, \frac{20}{3^3}\right) - \left(\frac{25}{3^3}, \frac{26}{3^3}\right)$	
5. Let C	$C = \bigcap C_i$		
II. Propert	ies of C		
1. $\mu(C_0$	$) = 1, \mu(C_1) = 2/3,$	4. C is nowhere de	ense
	$ = 4/9, \ \mu(C_3) = 8/27, \mathbf{p} \ \mu(C_n) = \frac{2}{3}\mu(C_{n-1}) = \frac{2^r}{3^r} $	$_{1}$ 5. C is compact	
	$\mu(C_n) = \frac{1}{3}\mu(C_{n-1}) = \frac{1}{3^r}$ nce $\mu(C) = 0$.	6. C is totally disc	onnected
	uncountable	7. $(\forall i) \ \partial C_i \subset C$	
3. <i>C</i> is	perfect	8. $(\forall i) \ \frac{1}{4} \notin \partial C_i$, bu	$\operatorname{Jt} \frac{1}{4} \in C$

Not So Strange After All

The Measurably Functional

Corollary

If *f* satisfies any measurability condition, then $\{x \mid f(x) = r\}$ is measurable for each *r*.

Definition (Measurable Function)

If a function $f: D \to \mathbb{R}_{\infty}$ has measurable domain D and satisfies any of the measurability conditions, then f is *measurable*.

Definition

Step function: $\phi:[a,b] \to \mathbb{R}_{\infty}$ is a *step function* if there is a partition $a = x_0$ $\langle x_1 < \cdots < x_n = b$ s.t. ϕ is constant on each interval $I_k = (x_{k-1}, x_k)$, then

$$\phi(x) = \sum_{k=1}^{n} a_k \chi_{I_k}(x)$$

Simple function: A function ψ with range $\{a_1, a_2, \ldots, a_n\}$ where each set $\psi^{-1}(a_k)$ is measurable is a *simple function*.

MAT 5620: 125

Sequencing

ector Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measure
	Zei	oing	
Theorem	n		
If f is mea	surable and $f = g$ a.e., the	n g is measurable.	
Definitio	on (Converence Almo	ost Everywhere)	
	f_n converges to f alm	ost everywhere, writte	n as $f_n o f$ a.e.,
iff $\mu(\{x:f_i\})$	$f_n(x) \not\to f(x)\}\Big) = 0.$		
Theorer	n		

Let $f:[a,b] \to \mathbb{R}$. Then f is measurable iff there is a seq. of simple functions $\{\psi_n\}$ converging to f a.e.

A Simple Proof

Vector Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measure	
Integration				

We began by looking at two examples of integration problems.

• The Riemann integral over [0, 1] of a function with infinitely many discontinuities didn't exist even though the points of discontinuity formed a set of measure zero.

(The points of discontinuity formed a dense set in [0, 1].)

 The limit of a sequence of Riemann integrable functions did not equal the integral of the limit function of the sequence. (Each function had area ¹/₂, but the limit of the sequence was the zero function.)

We will look at Riemann integration, then Riemann-Stieltjes integration, and last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy, Gauge, Perron, etc. See the list given in the "See also" section of *Integrals* on Mathworld.

Riemann Integral

Definition

- A partition \mathcal{P} of [a, b] is a finite set of points such that $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b\}.$
- Set $M_i = \sup f(x)$ on $[x_{i-1}, x_i]$. The *upper sum* of f on [a, b] w.r.t. \mathcal{P} is $U(\mathcal{P}, f) = \sum_{i=1}^{n} M_i \cdot \Delta x_i$

• The upper Riemann integral of
$$f$$
 over $[a, b]$ is

$$\int_{a}^{b} f(x) \, dx = \inf_{\mathcal{P}} U(\mathcal{P}, f)$$

Exercise

1. Define the lower sum $L(\mathcal{P}, f)$ and the lower integral $\int_a^b f$.

MAT 5620: 131

Intro to Lebesgue Measure

Definitely a Riemann Integral

Multiple Integration

Definition

If $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$, then f is Riemann integrable and is written as $\int_{a}^{b} f(x) dx$ and $f \in \mathfrak{R}$ on [a, b].

Proposition

A function f is Riemann integrable on [a, b] if and only if for every $\epsilon > 0$ there is a partition \mathcal{P} of [a, b] such that

 $U(\mathcal{P}, f) - L(\mathcal{P}, f) < \epsilon.$

Theorem

If f is continuous on [a, b], then $f \in \mathfrak{R}$ on [a, b].

Functions of Two Variables

Theorem

If *f* is bounded on [a, b] with only finitely many points of discontinuity, then $f \in \mathfrak{R}$ on [a, b].

Properties of Riemann Integrals

Proposition

Let f and $g \in \mathfrak{R}$ on [a, b] and $c \in \mathbb{R}$. Then

- $\int_a^b cf \, dx = c \int_a^b f \, dx$
- $\int_a^b (f+g) \, dx = \int_a^b f \, dx + \int_a^b g \, dx$
- $f \cdot q \in \mathfrak{R}$
- if $f \leq g$, then $\int_a^b f \, dx \leq \int_a^b g \, dx$

•
$$\left|\int_{a}^{b} f \, dx\right| \leq \int_{a}^{b} |f| \, dx$$

• Define $F(x) = \int_a^x f(t) dt$. Then F is continuous and, if f is continuous at x_0 , then $F'(x_0) = f(x_0)$

• If
$$F' = f$$
 on $[a, b]$, then $\int_{a}^{b} f(x) dx = F(b) - F(a)$

MAT 5620: 133

Intro to Lebesgue Measure

Riemann Integrated Exercises

Multiple Integration

Exercises

- 1. If $\int_{a}^{b} |f(x)| dx = 0$, then f = 0.
- 2. Show why $\int_0^1 \chi_{\mathbb{Q}}(x) dx$ does not exist.

Functions of Two Variables

3. Define

$$S_n(x) = \sum_{k=1}^{n+1} \left(\frac{k-1}{k} \cdot \chi_{\left[\frac{k-1}{k}, \frac{k}{k+1}\right)}(x) \right) + \frac{n}{n+1} \chi_{\left[\frac{n+1}{n+2}, 1\right]}(x).$$

- 3.1 How many discontinuities does S_n have?
- 3.2 Prove that $S'_{n}(x) = 0$ a.e. 3.3 Calculate $\int_{0}^{1} S_{n}(x) dx$.
- 3.4 What is S_{∞} ?
- 3.5 Does $\int_0^1 S_\infty(x) dx$ exist?

(See an animated graph of S_N .)

Riemann-Stieltjes Integral

Definition

- Let $\alpha(x)$ be a monotonically increasing function on [a, b]. Set $\Delta \alpha_i = \alpha(x_i) \alpha(x_{i-1})$.
- Set $M_i = \sup f(x)$ on $[x_{i-1}, x_i]$. The *upper sum* of f on [a, b] w.r.t. α and \mathcal{P} is

$$U(\mathcal{P}, f, \alpha) = \sum_{i=1}^{n} M_i \cdot \Delta \alpha_i$$

• The upper Riemann-Stieltjes integral of f over [a, b] w.r.t. α is $\int_{a}^{b} f(x) d\alpha(x) = \inf_{\mathcal{P}} U(\mathcal{P}, f, \alpha)$

Exercise

1. Define the lower sum $L(\mathcal{P}, f, \alpha)$ and lower integral $\int_a^b f d\alpha$.

MAT 5620: 135

Intro to Lebesgue Measure

Definitely a Riemann-Stieltjes Integral

Multiple Integration

Definition

If $\overline{\int}_{a}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha$, then f is Riemann-Stieltjes integrable and is written as $\int_{a}^{b} f(x) \, d\alpha(x)$ and $f \in \mathfrak{R}(\alpha)$ on [a, b].

Proposition

A function f is Riemann-Stieltjes integrable w.r.t. α on [a, b] iff for every $\epsilon > 0$ there is a partition \mathcal{P} of [a, b] such that

 $U(\mathcal{P}, f, \alpha) - L(\mathcal{P}, f, \alpha) < \epsilon.$

Theorem

If f is continuous on [a, b], then $f \in \mathfrak{R}(\alpha)$ on [a, b].

Functions of Two Variables

Theorem

If *f* is bounded on [a, b] with only finitely many points of discontinuity and α is continuous at each of *f*'s discontinuities, then $f \in \mathfrak{R}(\alpha)$ on [a, b].

Properties of Riemann-Stieltjes Integrals

Proposition

Let f and $g \in \mathfrak{R}(\alpha)$ and in β on [a, b] and $c \in \mathbb{R}$. Then

- $\int_{a}^{b} cf \, d\alpha = c \int_{a}^{b} f \, d\alpha$ and $\int_{a}^{b} f \, d(c\alpha) = c \int_{a}^{b} f \, d\alpha$
- $\int_{a}^{b} (f+g) d\alpha = \int_{a}^{b} f d\alpha + \int_{a}^{b} g d\alpha$ and $\int_{a}^{b} f d(\alpha + \beta) = \int_{a}^{b} f d\alpha + \int_{a}^{b} f d\beta$
- $f \cdot g \in \Re(\alpha)$
- if $f \leq g$, then $\int_a^b f \, d\alpha \leq \int_a^b g \, d\alpha$

Functions of Two Variables

- $\left| \int_{a}^{b} f \, d\alpha \right| \leq \int_{a}^{b} |f| \, d\alpha$
- Suppose that $\alpha' \in \Re$ and f is bounded. Then $f \in \Re(\alpha)$ iff $f\alpha' \in \Re$ and

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f \cdot \alpha' \, dx$$

Multiple Integration

MAT 5620: 137

Intro to Lebesgue Measure

Riemann-Stieltjes Integrals and Series

Proposition

If f is continuous at $c \in (a,b)$ and $\alpha(x) = r$ for $a \leq x < c$ and $\alpha(x) = s$ for $c < x \leq b,$ then

$$\int_{a}^{b} f \, d\alpha = f(c) \left(\alpha(c+) - \alpha(c-) \right)$$
$$= f(c) \left(s - r \right)$$

Proposition

Let $\alpha = \lfloor x \rfloor$, the greatest integer function. If f is continuous on [0, b], then

$$\int_{0}^{b} f(x) d\lfloor x \rfloor = \sum_{k=1}^{\lfloor b \rfloor} f(k)$$

Riemann-Stieltjes Integrated Exercises

- 1. $\int_0^1 x \, dx^2$ 4. $\int_{-1}^1 e^x d|x|$ 2. $\int_0^{\pi/2} \cos(x) \, d\sin(x)$ 5. $\int_{-3/2}^{3/2} e^x d\lfloor x \rfloor$ 3. $\int_0^{5/2} x \, d(x \lfloor x \rfloor)$ 6. $\int_{-1}^1 e^x d\lfloor x \rfloor$
- 7. Set H to be the Heaviside function; i.e.,

$$H(x) = egin{cases} 0 & x \leq 0 \ 1 & \textit{otherwise} \end{cases}.$$

Show that, if f is continuous at 0, then

$$\int_{-\infty}^{+\infty} f(x) \, dH(x) = f(0).$$

 Vector Calculus
 Functions of Two Variables
 Multiple Integration
 Intro to Lebesgue Measure

Lebesgue Integral

We start with simple functions.

Definition

A function has *finite support* if it vanishes outside a finite interval.

Definition

 $\overline{i=1}$

Let ϕ be a measurable simple function with finite support. If

$$\phi(x) = \sum a_i \chi_{A_i}(x)$$
 is a representation of ϕ , then

$$\int \phi(x) \, dx = \sum_{i=1}^n a_i \cdot \mu(A_i)$$

Definition

If *E* is a measurable set, then $\int_E \phi = \int \phi \cdot \chi_E$.

Integral Linearity

Proposition

If ϕ and ψ are measurable simple functions with finite support and $a, b \in \mathbb{R}$, then $\int (a\phi + b\psi) = a \int \phi + b \int \psi$. Further, if $\phi \leq \psi$ a.e., then $\int \phi \leq \int \psi$.

Proof (sketch).

I. Let
$$\phi = \sum_{k=1}^{N} \alpha_i \chi_{A_i}$$
 and $\psi = \sum_{k=1}^{M} \beta_i \chi_{B_i}$. Then show $a\phi + b\psi$ can be
written as $a\phi + b\psi = \sum_{k=1}^{K} (a\alpha_{k_i} + b\beta_{k_j})\chi_{E_k}$ for the properly chosen E_k .
Set A_0 and B_0 to be zero sets of ϕ and ψ . (Take
 $\{E_k : k = 0..K\} = \{A_j \cap B_k : j = 0..N, k = 0..M\}$.)
II. Use the definition to show $\int \psi - \int \phi = \int (\psi - \phi) \ge \int 0 = 0$.

Steps to the Lebesgue Integral

Multiple Integration

Intro to Lebesgue Measure

Proposition

Vector Calculus

Let f be bounded on $E \in \mathfrak{M}$ with $\mu(E) < \infty$. Then f is measurable iff

$$\inf_{f \le \psi} \int_E \psi = \sup_{f \ge \phi} \int_E \phi$$

for all simple functions ϕ and ψ .

Proof.

I. Suppose f is bounded by M. Define

Functions of Two Variables

$$E_k = \left\{ x : \frac{k-1}{n} M < f(x) \le \frac{k}{n} M \right\}, \qquad -n \le k \le n$$

The E_k are measurable, disjoint, and have union E. Set

$$\psi_n(x) = \frac{M}{n} \sum_{-n}^n k \, \chi_{E_k}(x), \qquad \phi_n(x) = \frac{M}{n} \sum_{-n}^n (k-1) \, \chi_{E_k}(x)$$

SLI (cont)

(proof cont).

Then $\phi_n(x) \leq f(x) \leq \psi(x)$, and so • $\inf \int_E \psi \leq \int_E \psi_n = \frac{M}{n} \sum_{k=-n}^n k \,\mu(E_k)$ • $\sup \int_E \phi \geq \int_E \phi_n = \frac{M}{n} \sum_{k=-n}^n (k-1) \,\mu(E_k)$ Thus $0 \leq \inf \int_E \psi - \sup \int_E \phi \leq \frac{M}{n} \mu(E)$. Since *n* is arbitrary, equality holds.

II. Suppose that $\inf \int_E \psi = \sup \int_E \phi$. Choose ϕ_n and ψ_n so that $\phi_n \leq f \leq \psi_n$ and $\int_E (\psi_n - \phi_n) < \frac{1}{n}$. The functions $\psi^* = \inf \psi_n$ and $\phi^* = \sup \phi_n$ are measurable and $\phi^* \leq f \leq \psi^*$. The set $\Delta = \{x : \phi^*(x) < \psi^*(x)\}$ has measure 0. Thus $\phi^* = \psi^*$ almost everywhere, so $\phi^* = f$ a.e. Hence *f* is measurable.

MAT 5620: 143

Defining the Lebesgue Integral

Definition

If f is a bounded measurable function on a measurable set E with $m(E)<\infty,$ then

$$\int_E f = \inf_{\psi \ge f} \int_E \psi$$

for all simple functions $\psi \ge f$.

Proposition

Let f be a bounded function defined on E = [a, b]. If f is Riemann integrable on [a, b], then f is measurable on [a, b] and

$$\int_E f = \int_a^b f(x) \, dx;$$

the Riemann integral of f equals the Lebesgue integral of f.

MAT 5620: 145

Intro to Lebesgue Measure

Properties of the Lebesgue Integral

Multiple Integration

Proposition

If f and g are measurable on E, a set of finite measure, then

•
$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g$$

• if $f = g$ a.e., then $\int_{E} f = \int_{E} g$

Functions of Two Variables

• if
$$f \leq g$$
 a.e., then $\int_E f \leq \int_E g$

•
$$\left| \int_{E} f \right| \leq \int_{E} |f|$$

• if $a \leq f \leq b$, then $a \cdot \mu(E) \leq \int_{E} f \leq b \cdot \mu(E)$
• if $A \cap B = \emptyset$ then $\int_{E} f = \int_{E} f + \int_{E} f$

if
$$A \cap B = \emptyset$$
, then $\int_{A \cup B} f = \int_A f + \int_B d$.

Lebesgue Integral Examples

Examples

1. Let
$$T(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q} \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$
. Then $\int_{[0,1]} T = \int_0^1 T(x) \, dx$.
2. Let $\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$. Then $\int_{[0,1]} \chi_{\mathbb{Q}} \neq \int_0^1 \chi_{\mathbb{Q}}(x) \, dx$.
3. Define
 $f_n(x) = \sum_{k=1}^{n+1} \left(\frac{k-1}{k} \cdot \chi_{\left[\frac{k-1}{k}, \frac{k}{k+1}\right]}(x) \right) + \frac{n}{n+1} \chi_{\left[\frac{n+1}{n+2}, 1\right]}(x)$.
Then
3.1 f_n is a step function, hence integrable
3.2 $f'_n(x) = 0$ a.e.
3.3 $\frac{1}{4} \leq \int_{[0,1]} f_n = \int_0^1 f_n(x) \, dx < \frac{3}{8}$

MAT 5620: 147

Intro to Lebesgue Measure

Extending the Integral Definition

Multiple Integration

Definition

Vector Calculus

Let f be a nonnegative measurable function defined on a measurable set E. Define $\int d f$

$$f = \sup_{h \le f} \int_E h$$

where h is a bounded measurable function with finite support.

ſ

Proposition

If f and g are nonnegative measurable functions, then

Functions of Two Variables

•
$$\int_E c f = c \int_E f$$
 for $c > 0$
• $\int_E f + a = \int_E f + \int_E a$

$$\int_{E} \int_{E} \int_{E$$

If
$$f \leq g$$
 a.e., then $\int_E f \leq \int_E g$

General Lebesgue's Integral

Definition

Set $f^+(x) = \max\{f(x), 0\}$ and $f^-(x) = \max\{-f(x), 0\}$. Then $f = f^+ - f^$ and $|f| = f^+ + f^-$. A measurable function f is integrable over E iff both f^+ and f^- are integrable over E, and then $\int_E f = \int_E f^+ - \int_E f^-$.

Proposition

Let f and g be integrable over E and let $c \in \mathbb{R}$. Then

1.
$$\int_{E} cf = c \int_{E} f$$

2.
$$\int_{E} f + g = \int_{E} f + \int_{E} g$$

3. if $f \le g$ a.e., then $\int_{E} f \le \int_{E} g$
4. if A, B are disjoint m'ble subsets of $E, \int_{A \cup B} f = \int_{A} f + \int_{B} f$

MAT 5620: 149

Intro to Lebesgue Measure

Convergence Theorems

Multiple Integration

Theorem (Bounded Convergence Theorem)

Functions of Two Variables

Let $\{f_n : E \to \mathbb{R}\}\$ be a sequence of measurable functions converging to f with $m(E) < \infty$. If there is a uniform bound M for all f_n , then

$$\int_E \lim_n f_n = \lim_n \int_E f_n$$

Proof (sketch).

Let $\epsilon > 0$.

1. f_n converges "almost uniformly;" i.e., $\exists A, N$ s.t. $m(A) < \frac{\epsilon}{4M}$ and, for $n > N, x \in E - A \implies |f_n(x) - f(x)| \le \frac{\epsilon}{2m(E)}$. 2. $\left| \int_E f_n - \int_E f \right| = \left| \int_E f_n - f \right| \le \int_E |f_n - f| = \left(\int_{E-A} + \int_A \right) |f_n - f|$ 3. $\int_E \int_E |f_n - f| + \int_A |f_n| + |f| \le \frac{\epsilon}{2m(E)} \cdot m(E) + 2M \cdot \frac{\epsilon}{4M} = \epsilon$

Lebesgue's Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)

Let $\{f_n : E \to \mathbb{R}\}\$ be a sequence of measurable functions converging a.e. on E with $m(E) < \infty$. If there is an integrable function g on E such that $|f_n| \le g$ then

$$\int_E \lim_n f_n = \lim_n \int_E f_n$$

Lemma

Under the conditions of the DCT, set $g_n = \sup_{k \ge n} \{f_n, f_{n+1}, ...\}$ and $h_n = \inf_{k \ge n} \{f_n, f_{n+1}, ...\}$. Then g_n and h_n are integrable and $\lim g_n = f = \lim h_n$ a.e.

Proof of DCT (sketch).

• Both g_n and h_n are monotone and converging. Apply MCT.

MAT 5620: 151

• $h_n \leq f_n \leq g_n \implies \int_E h_n \leq \int_E f_n \leq \int_E g_n$.

<page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Sidebar: Littlewood's Three Principles

John Edensor Littlewood said,

The extent of knowledge required is nothing so great as sometimes supposed. There are three principles, roughly expressible in the following terms:

- every measurable set is nearly a finite union of intervals;
- every measurable function is nearly continuous;
- every convergent sequence of measurable functions is nearly uniformly convergent.

Most of the results of analysis are fairly intuitive applications of these ideas.

From Lectures on the Theory of Functions, Oxford, 1944, p. 26.

MAT 5620: 153

r	Cal	lcul	us		

Vecto

Multiple Integration

Intro to Lebesgue Measure

Extensions of Convergence

The sequence f_n converges to $f \ldots$

Definition (Convergence Almost Everywhere)

almost everywhere if $m(\{x : f_n(x) \not\rightarrow f(x)\}) = 0.$

Functions of Two Variables

Definition (Convergence Almost Uniformly)

almost uniformly on *E* if, for any $\epsilon > 0$, there is a set $A \subset E$ with $m(A) < \epsilon$ so that f_n converges uniformly on E - A.

Definition (Convergence in Measure)

in measure if, for any $\epsilon > 0$, $\lim_{n \to \infty} m\left(\{x : |f_n(x) - f(x)| \ge \epsilon\}\right) = 0.$

Definition (Convergence in Mean (of order p > 1))

in mean if $\lim_{n\to\infty} \|f_n - f\|_p = \lim_{n\to\infty} \left[\int_E |f - f_n|^p\right]^{1/p} = 0$

Integrated Exercises

Exercises

Vector Calculus	Functions of Two Variables	Multiple Integration	Intro to Lebesgue Measure		
References					

Texts on analysis, integration, and measure:

- Mathematical Analysis, T. Apostle
- Principles of Mathematical Analysis, W. Rudin
- Real Analysis, H. Royden
- Lebesgue Integration, S. Chae
- Geometric Measure Theory, F. Morgan

Comparison of different types of integrals:

- A Garden of Integrals, F Burk
- Integral, Measure, and Derivative: A Unified Approach, G. Shilov and B. Gurevich