
Analysis Comprehensive Sample Exam
Topics include: convergence of uniform convergence for series and sequences of functions,

power series, proofs using central notions from calculus (e.g. definitions of limits, continuity,
and derivatives, the mean value theorem), Lebesgue measure theory, and vector analysis.
Section 1 problems are computational problems on convergence, section 2 problems are
more abstract treatments of convergence and proofs from calculus, section 3 problems cover
Lebesgue theory, and section 4 covers vector analysis.

Recent exams consisted of several (less than five) problems from each of the four sections.
Students were asked to complete two problems from sections 1 through 3 and one problem
from section 4. A sample exam (with extra problems) follows.

Analysis Comprehensive Exam

Instructions:

There are four sections in the exam. You should complete two problems in each of the
first three parts, and one problem in the fourth.

You may use a calculator and/or Maple.

Sample Problems

Section 1: Complete two problems. All sequences and series range over positive integers.
Completely explain your answers.

1. Find the limit of the sequence {an}, where an = n sin 3
n
.

2. Determine whether or not
∑

2
k2+2k

converges. If it does, find the sum.

3. Suppose that fn(x) = 1
nx2+1

. Determine whether or not the sequence {fn} converges
uniformly on (0,∞).

4. Suppose that fn(x) = 1
n
e−n

2x2
. Determine whether or not the sequence {fn} converges

uniformly on (0,∞).

5. Let fn(x) = xn

xn+1
for x ∈ [2, 10]. If possible, evaluate lim

n→∞

∫ 8

3

fn(x) dx.

6. Use an appropriate test to determine if the series
∞∑
n=1

√
n+ 17

n2 − 64n− 112
converges or

diverges. Justify your answers.

7. For which p > 0 does the series
∞∑
n=1

np pn converge? Justify your answer.

8. For which p > 0 does the series
∞∑
n=2

1

n (lnn)p
converge? Justify your answer.



9. Prove the series
∞∑
n=1

(
5

2n
− 3

5n

)
converges and find the sum.

10. Determine if the series
∞∑
n=1

(−e)k

k4
diverges, converges conditionally, or converges abso-

lutely and justify your answer.

11. Find the pointwise limit of the sequence of functions

fn(x) =

{
1 if x ∈ [−n, n]
0 otherwise

.

Is the convergence uniform? Prove your answer.

12. Let fn(x) =
2nx

1 + n2x2
where 0 ≤ x ≤ 1. Does fn(x) converge uniformly on 0 ≤ x ≤ 1?

13. Prove that if fn(x) is a sequence of functions such that {fn(x)} converges to f(x)
uniformly on [a, b] and each fn(x) is bounded on [a, b], then f(x) must be bounded on
[a, b].

14. Suppose that fn(x) =
n∑

k=1

1

kx
. Determine whether or not the sequence {fn(x)} con-

verges uniformly on [a,∞) with a > 1.

15. Find the radius and interval of convergence of the series
∞∑
k=1

(2x)k

k2
.

16. Find the radius and interval of convergence of the series
∞∑
k=1

(x− 4)k

k 3k
.

17. Let f(x) = arctan(x). Find an infinite power series that converges to

∫ 0.1

0

f(x) dx.

18. Prove
∞∑
k=1

1

kp
converges for all p < 1 and diverges for all p ≥ 1.



Section 2: Complete two problems.

1. Prove that if
∑
ak converges and

∑
bk diverges, then

∑
(ak + bk) diverges.

2. Use the δ − ε definition of the limit to prove that lim
x→0

ex = 1.

3. Prove that if f is differentiable at x = a, then f is continuous at x = a.

4. Use the mean value theorem to prove that sin(x) ≤ x for all x > 0.

5. Suppose f is differentiable on (a, b) and f ′ is bounded. Prove that f is uniformly
continuous.

6. Prove the series
∞∑
k=0

rk converges to
1

1− r
if |r| < 1 and diverges if |r| ≥ 1.

7. Let
∞∑
k=0

ak and
∞∑
k=0

bk be infinite series where bk > 0 for all k ∈ N. Assume
∞∑
k=0

bk

converges and that there exists n∗ ∈ N such that for all n > n∗, we have |an| ≤ M bn

for some positive constant M. Prove
∞∑
k=0

ak converges.

8. Suppose
∑

ak converges absolutely and the sequence {bk} is bounded. Prove
∑

ak bk
converges.

9. Suppose ak > 0 and
∑

ak converges. Prove
∑ 1

ak
diverges.

10. If
∞∑
k=0

ak converges absolutely, then prove
∞∑
k=0

a2k converges. Is the converse true? Give

a proof or counterexample.

11. Suppose {fn(x)} is a sequence of continuous functions that converges uniformly to a
function f(x) for all x ∈ [a, b]. Prove f(x) is continuous on [a, b].

12. Suppose {fn(x)} is a sequence of continuous functions that converges uniformly to a
function f(x) for all x ∈ [a, b]. Prove

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

13. Suppose {fn(x)} is a sequence of continuous functions that converges uniformly to a
function f(x) for all x ∈ [a, b] and that {xn} is a sequence such that xn ∈ [a, b] and
lim
n→∞

xn = c. Prove that lim
n→∞

fn(xn) = f(c).

14. Suppose that {an} is a sequence such that an > 0 for all n and
an+1

an
≤ α for all n ≥ n∗

where α ∈ [0, 1). Prove the series
∑

an converges.

15. If {an} is a sequence that is decreasing and converges to 0, then prove
∑

(−1)n an
converges.



Section 3: Complete two problems.

1. Suppose f is a non-negative measurable function on [0, 1]. Show that if for every
integer n > 0, the set {x ∈ [0, 1] | f(x) > 1/n} has measure zero, then f is equal to
zero almost everywhere (that is, f = 0 a.e.).

2. Let f be a non-negative measurable function on [0, 1]. Prove that if the Lebesgue
integral of f on [0, 1] is 0, then f is equal to zero almost everywhere. (That is, prove
that if

∫
[0,1]

f dµ = 0 then f = 0 a.e.).

3. Suppose that X ⊆ [0, 1] and X is a set of measure 0. Prove that T = {2x | x ∈ X} is
also a set of measure 0.

4. Suppose S = { 1
2n
| n ∈ N} and S̃ denotes the complement of S. Define

f(x) =

{
ex if x ∈ [0, 1] ∩ S̃
e−x if x ∈ S.

(a) Find the Lebesgue integral of f(x) over [0, 1].

(b) Is f(x) Riemann integrable over [0, 1]? Justify your answer.

Section 4: Complete one problem.

1. Let S be the surface (with outward normal ~n) of the region lying above the rectangle in
the x−y plane defined by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, and below the surface z = x2 +y2.
Apply the divergence theorem to compute the flux integral

∫ ∫
S
F · ~n dS given that

F = yz~i+ xz2~j + (z + xy)~k.

2. Let S be the surface consisting of the portion of the paraboloid Z = x2+y2 lying below
the plane z = 4. Suppose F = −2y~i+ 2x~j + ez~k. Use Stokes’ theorem to calculate the
flux

∫ ∫
∇× F · ~n dS of ∇× F over S.

3. Find the area enclosed by the ellipse parameterized by the curve x = 4 cos(θ), y =
sin(θ), for 0 ≤ θ ≤ 2π, by applying Green’s Theorem to the vector field F = −1

2
y~i+ 1

2
x~j.


