Types of Convergence

Let $\{f_n\}$ be a sequence of functions defined on a common measurable domain $E \subseteq \mathbb{R}$.

Definition 1 (Pointwise). *f_n converges to f* pointwise *on E if and only if*...

Definition 2 (Uniform). f_n converges to f uniformly on E if and only if ...

Definition 3 (Almost Everywhere). f_n converges to f almost everywhere ("a.e.") on E if and only if $f_n(x) \to f(x)$ except on a set of measure zero.

Definition 4 (Almost Uniformly). f_n converges to f almost uniformly on E if and only if for every $\varepsilon > 0$ there is a set E_{ε} of measure less than ε such that $f_n \to f$ uniformly on E_{ε}^c , the complement of E_{ε} .

Definition 5 (In Mean). f_n converges to f in mean on E if and only if

$$\lim_{n\to\infty}\int_E \left|f_n - f\right|d\mu = 0$$

Definition 6 (In L^p). f_n converges to f in L^p on E if and only if

$$\lim_{n\to\infty}\left[\int_E \left|f_n - f\right|^p d\mu\right]^{1/p} = 0$$

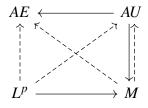
Definition 7 (In Measure). f_n converges to f in measure on E if and only if for every $\varepsilon > 0$

$$\lim_{n\to\infty}\mu\bigl(\{x\in E: |f_n(x)-f(x)|>\varepsilon\}\bigr)=0$$

Convergence Diagrams

A solid arrow indicates the source mode implies the target mode. A dashed arrow means that there exists a subsequence that converges in the target mode. Note: AE = almost everywhere, AU = almost uniform, L^p = in L^p mean, M = in measure.

General Measure Spaces



Finite Measure Spaces ($\mu(E) < \infty$)



Dominated Convergence $(\exists g, \text{ integrable, s.t. } |f_n| < g)$

