MAT 5620	Homework I	Name:
Spring '14		EMAIL ID:

§I. There are 2 proofs at 5 points each.

Proposition 1. Suppose $\vec{r}(t)$ is integrable on [a,b]. Then $||\vec{r}(t)||$ is integrable on [a,b] and

$$\left\| \int_a^b \vec{r}(t) dt \right\| \le \int_a^b \|\vec{r}(t)\| dt.$$

Let $\vec{r}(t) = \langle f(t), g(t) \rangle$ for $t \in [a,b]$. Define the *curvature* κ of \vec{r} at t to be

$$\kappa = \left| \frac{d\phi}{ds} \right|$$

where $\phi = \arctan(dy/dx)$ (the angle between the tangent vector and the x-axis) and $ds = \sqrt{dx^2 + dy^2}$. Use

$$\left| \frac{d\phi}{ds} \right| = \left| \frac{d\phi/dt}{ds/dt} \right|$$

to prove (remembering that for parametric functions in \mathbb{R}^2 , dy/dx = (dy/dt)/(dx/dt))

Proposition 2. For $\vec{r}(t) = \langle f(t), g(t) \rangle$ twice differentiable for $t \in [a, b]$,

$$\kappa = \frac{\left| \frac{dx}{dt} \frac{d^2y}{dt^2} - \frac{d^2x}{dt^2} \frac{dy}{dt} \right|}{\left[\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 \right]^{3/2}}$$