Parametric Differentiation and Integration

Example 1. Integrate $\int_0^\infty \frac{\sin(x)}{x} dx$.

1. Set

$$F(p) = \int_0^\infty e^{-px} \frac{\sin(x)}{x} dx, \qquad (p \ge 0)$$

2. Differentiate F w.r.t. p

$$F'(p) = -\int_0^\infty e^{-px} \sin(x) dx = \int_0^\infty e^{-px} d(\cos(x))$$

Integrate by parts (twice) to get

$$=\frac{-1}{1+p^2}$$

which yields

$$F(p) = -\arctan(p) + C$$

Since $\lim_{p\to\infty} F(p) = 0$, then $C = \pi/2$. Thus

$$F(p) = \frac{\pi}{2} - \arctan(p)$$

3. Now

$$F(p) = \frac{\pi}{2} - \arctan(p) = \int_0^\infty e^{-px} \frac{\sin(x)}{x} dx$$

implies

$$F(0) = \frac{\pi}{2} - \arctan(0) = \int_0^\infty \frac{\sin(x)}{x} dx$$

I.e.,

$$\int_0^\infty \frac{\sin(x)}{x} dx = \frac{\pi}{2}$$

Example 2. Integrate $\int_0^\infty e^{-\alpha x^2} \cos(\beta x) dx$ where $\alpha, \beta > 0$.

1. Set

$$F(\beta) = \int_0^\infty e^{-\alpha x^2} \cos(\beta x) \, dx$$

Note that

$$F(0) = \int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

2. Now differentiate F w.r.t. β

$$F'(\beta) = -\int_0^\infty x e^{-\alpha x^2} \sin(\beta x) dx$$
$$= \frac{1}{2\alpha} \int_0^\infty \sin(\beta x) d(e^{-\alpha x^2})$$

3. Integrate by parts to have

$$F'(\beta) = \frac{1}{2\alpha} e^{-\alpha x^2} \sin(\beta x) \Big|_0^{\infty} - \frac{\beta}{2\alpha} \int_0^{\infty} e^{-\alpha x^2} \cos(\beta x) dx$$
$$= -\frac{\beta}{2\alpha} \int_0^{\infty} e^{-\alpha x^2} \cos(\beta x) dx = -\frac{\beta}{2\alpha} F(\beta)$$

4. Solve the initial value problem

$$\left\{ \begin{array}{l} F'(\beta) = -\frac{\beta}{2\alpha} F(\beta) \\ F(0) = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}} \end{array} \right.$$

to see

$$F(\beta) = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}} e^{-\frac{\beta^2}{4\alpha}}$$

5. Aha!

$$\int_0^\infty e^{-\alpha x^2} \cos(\beta x) \, dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}} \, e^{-\beta^2/(4\alpha)}$$

Example 3. Integrate the Laplace integral $\int_0^\infty \frac{\cos(\beta x)}{\alpha^2 + x^2} dx$ for $\alpha, \beta > 0$.

1. Set

$$L(\beta) = \int_0^\infty \frac{\cos(\beta x)}{\alpha^2 + x^2} dx$$

2. Then differentiating w.r.t β gives

$$L'(\beta) = -\int_0^\infty \frac{x \sin(\beta x)}{\alpha^2 + x^2} dx$$

3. Differentiating again gives a divergent integral, so instead we'll use partial fractions. Since

$$\frac{\alpha^2 \sin(\beta x)}{x(\alpha^2 + x^2)} = \frac{\sin(\beta x)}{x} - \frac{x \sin(\beta x)}{\alpha^2 + x^2}$$

we have that

$$\int_0^\infty \frac{\alpha^2 \sin(\beta x)}{x(\alpha^2 + x^2)} dx = \int_0^\infty \frac{\sin(\beta x)}{x} dx - \int_0^\infty \frac{x \sin(\beta x)}{\alpha^2 + x^2} dx$$
$$= \frac{\pi}{2} + L'(\beta)$$

Now differentiate w.r.t β again to obtain

$$\alpha^2 L(\beta) = L''(\beta)$$

4. The general solution to this differential equation is $L(\beta) = c_1 e^{\alpha \beta} + c_2 e^{-\alpha \beta}$.

5. Since
$$L(\beta) \leq \int_0^\infty \frac{dx}{\alpha^2 + x^2} = \frac{\pi}{2\alpha}$$
, i.e., L is bounded, then $c_1 = 0$. Whence $c_2 = L(0) = \frac{\pi}{2\alpha}$.

6. Aha!
$$L(\beta) = \int_0^\infty \frac{\cos(\beta x)}{\alpha^2 + x^2} dx = \frac{\pi}{2\alpha} e^{-\alpha\beta}$$
.

Exercises

- 1. Curiously, $\int_0^\infty e^{-\alpha x^2} \sin(\beta x) dx$ does not have an elementary form. Find where the technique fails.
- 2. Compute $\int_0^1 \frac{x^t 1}{\ln(x)} dx$ for t > -1 using D.I. with the parameter t.
- 3. Look at Talvila's "Some Divergent Trigonometric Integrals," Amer. Math. Monthly **108** (2001), pp 432–436, for an example where Cauchy used this technique improperly.
 - (a) What are the integrals Cauchy had wrong?
 - (b) What are the appropriate conditions for differentiating under the integral?