Mat 5620	Final Exam	NAME:
Fall '14		Email:

Work quickly and carefully, following directions closely. Answer all questions completely.

§I. PROBLEMS.

1. Prove or disprove: If $\vec{r}: [a,b] \to \mathbb{R}^n$ is integrable, then

$$\left\|\int_{a}^{b} \vec{r}(t) dt\right\| \leq \int_{a}^{b} \|\vec{r}(t)\| dt$$

2. Prove: If C is a smooth rectifiable curve, and f is continuous everywhere, then

$$\left| \int_{C} f \, ds \right| \leq \operatorname{length}(C) \cdot \max_{\vec{x} \in C} |f(\vec{x})|$$

3. Let \mathscr{S} be the surface consisting of the portion of the paraboloid $\Omega = x^2 + y^2$ lying below the plane z = 1. Suppose $F(x,y) = -2y\mathbf{i} + 2x\mathbf{j} + e^z\mathbf{k}$. Use Stokes' theorem to calculate the flux $\iint_{\mathscr{S}} \nabla \times F \cdot \vec{n} \, dS$.

4. Let $\psi(x,y) = \begin{cases} \frac{y^2 - x^2}{(x^2 + y^2)^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$. Show that Fubini's Theorem does not hold for ψ by evaluating

$$\int_0^1 \int_0^1 \psi(x,y) \, dx \, dy \quad \text{and} \quad \int_0^1 \int_0^1 \psi(x,y) \, dy \, dx.$$

Explain why Fubini's Theorem doesn't hold for ψ on the rectangle $[0,1] \times [0,1]$.

- 5. Prove: Let *E* be a subset of *N* where $\mu(N) = 0$. Then $E \in \mathfrak{M}$ and $\mu(E) = 0$.
- 6. Set $f_n(x) = \frac{x^n}{1+x^{2n}}$. Apply Lebesgue's *Dominated Convergence Theorem*, if possible, to determine

$$\lim_{n\to\infty}\int_0^\infty f_n\,d\mu$$

showing how the theorem applies or fails to apply.

- 7. Prove: Let $f: [0,1] \to \mathbb{R}$ be a non-negative measurable function and $\int_{[0,1]} f d\mu = 0$. Then f = 0 almost everywhere.
- 8. Investigate modes of convergence for the following sequences.
 - (a) $g_n: [0,1] \to \mathbb{R}$ given by $g_n(x) = e^n \cdot \chi_{[0,1/n]}(x)$
 - (b) $h_n : \mathbb{R} \to \mathbb{R}$ given by $h_n(x) = n^{-1} \cdot \chi_{[0,e^n]}(x)$
 - (c) $k_n : [0, \infty) \to \mathbb{R}$ given by $k_n(x) = \chi_{[n, n+1/n]}(x)$

9. Use *parametric integration* to determine the value of the integral $\int_0^1 \frac{x^{\tau} - 1}{\ln(x)} dx$ for $\tau > -1$. (The "elementary calculus approach" substitutes $x = e^{-z}$ for $z = 0..\infty$).