MAT 5620	Midterm Exam	NAME:
FALL ${ }^{\prime} 14$		EMAIL:

Work quickly and carefully, following directions closely. Answer all questions completely.

§I. PRoblems.

1. Let \mathscr{A} be the astroid given by $A(t)=\left[\cos ^{3}(t), \sin ^{3}(t)\right]$ for $t \in[0,2 \pi]$. Let $P(t)$ be a point on \mathscr{A}. Let P_{x} and P_{y} be the x and y-intercepts of the line tangent to \mathscr{A} at $P(t)$. Show that the line segment $\overline{P_{x} P_{y}}$ has constant length; i.e., the length of the segment is independent of t.

2. Let $\vec{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a vector-valued function that has 2 continuous derivatives for all t. Prove or disprove

$$
\frac{d}{d t}\left[\vec{r}(t) \times \vec{r}^{\prime}(t)\right]=\vec{r}(t) \times \vec{r}^{\prime \prime}(t)
$$

3. Let $f(t)=\frac{2 t^{2}}{1+t^{2}}$ and set $C_{6 \pi}$ to be the curve given by $\gamma(t)=[f(t) \cos (2 t), f(t) \sin (2 t)]$ for $t \in[0,6 \pi]$. Find the length of the curve defined by γ. Make a conjecture concerning the ratio $\frac{\text { length }\left(\gamma_{2 n \pi}\right)}{4 n}$ as $n \rightarrow \infty$.
4. Prove or disprove:

Let $A_{1}=B\left(\left[\begin{array}{l}1 \\ 0\end{array}\right], 1\right)$ and $A_{-1}=B\left(\left[\begin{array}{c}-1 \\ 0\end{array}\right], 1\right)$ be open balls in \mathbb{R}^{2}. Then $E=A_{1} \cup A_{-1}$ is not separated.
5. Let $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{array}\right.$.
(a) Use polar coordinates to show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
(b) Show that f is not continuous at $(0,0)$.
(c) If $g(x)=f(x, b)$, where b is any real constant, show that g is continuous at 0 .
(d) Show that $|f(x, y)| \leq \frac{1}{2}$ for all x and y.
(e) Show $f_{x}(0,0)=0=f_{y}(, 0,0)$ even though f is not continuous at $(0,0)$.
6. A harmonic function is one that satisfies Laplace's equation $\nabla^{2} f(x, y)=0$ where $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$.
(a) Prove that the functions
i. $f(x, y)=x^{3}-3 x y^{2}$
ii. $g(x, y)=3 x^{2} y-y^{3}$
are harmonic.
(b) Find $\frac{d^{2} z}{d t^{2}}$ for $z=f(x, y)$ when $x(t)=\ln (t)$ and $y(t)=e^{t}$ using the chain rule. Don't expand f in terms of t.
7. Find the Taylor expansion centered at the origin to total degree 4 of the lonely mountain $\Psi(x, y)=e^{-x^{2}-y^{2}}$.

