1. Prove:

Proposition 1. Suppose that all of the partial derivatives of f exist in a neighborhood of \vec{p} and are continuous at \vec{p}. Then, f is differentiable at \vec{p}.
2. Suppose that $f(x, y)=x \cos (\pi y)+y^{2} e^{x}$. What are the values of the total derivative of f, at the point $(-1,1)$, with respect to the vectors $(4,-2)$ and $(-3,5)$, i.e., what are $D_{(-1,1)} f(4,-2)$ and $D_{(-1,1)} f(-3,5)$?
3. Show that $f(x, y)=\sqrt{x^{2}+y^{2}}$ is not differentiable at the origin.
4. (\#16 p 400)

Let $r>0$, let $I(r)=\int_{-r}^{+r} e^{-u^{2}} d u$.
(a) Show that $I^{2}(r)=\iint_{R} e^{-\left(x^{2}+y^{2}\right)} d x d y$ where $R=[-r, r] \times[-r, r]$.
(b) Let C_{1} and C_{2} be disks circumscribing and inscribing R. Show that

$$
\iint_{C_{1}} e^{-\left(x^{2}+y^{2}\right)} d x d y \leq I^{2}(r) \leq \iint_{C_{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

(c) Change the integrals over C_{1} and C_{2} to polar coordinates.
(d) Show that $I^{2}(r) \rightarrow \pi$, therefore $I(r) \rightarrow \sqrt{\pi}$. Aha! Whence $\int_{0}^{\infty} e^{-u^{2}} d u=\frac{1}{2} \sqrt{\pi}$.
5. State Green's Theorem for the annulus $A\left(\vec{c}, r_{\text {inner }}, r_{\text {outer }}\right)$.
6. Compute the double integral $\iint_{R} f(x, y) d x d y$ where R is the unit square $[0,1] \times[0,1]$ and where $f(x, y)=\sin (\pi(x+y) / 2)$.

