1. Prove:

Proposition 1. Suppose that all of the partial derivatives of f exist in a neighborhood of \vec{p} and are continuous at \vec{p} . Then, f is differentiable at \vec{p} .

- 2. Suppose that $f(x, y) = x \cos(\pi y) + y^2 e^x$. What are the values of the total derivative of f, at the point (-1, 1), with respect to the vectors (4, -2) and (-3, 5), i.e., what are $D_{(-1,1)}f(4, -2)$ and $D_{(-1,1)}f(-3, 5)$?
- 3. Show that $f(x, y) = \sqrt{x^2 + y^2}$ is not differentiable at the origin.
- 4. (#16 p 400)
 - Let r > 0, let $I(r) = \int_{-r}^{+r} e^{-u^2} du$.
 - (a) Show that $I^2(r) = \iint_R e^{-(x^2+y^2)} dx dy$ where $R = [-r, r] \times [-r, r]$.
 - (b) Let C_1 and C_2 be disks circumscribing and inscribing R. Show that

$$\iint_{C_1} e^{-(x^2 + y^2)} \, dx \, dy \le I^2(r) \le \iint_{C_2} e^{-(x^2 + y^2)} \, dx \, dy$$

- (c) Change the integrals over C_1 and C_2 to polar coordinates.
- (d) Show that $I^2(r) \to \pi$, therefore $I(r) \to \sqrt{\pi}$. Aha! Whence $\int_0^\infty e^{-u^2} du = \frac{1}{2}\sqrt{\pi}$.
- 5. State Green's Theorem for the annulus $A(\vec{c}, r_{inner}, r_{outer})$.
- 6. Compute the double integral $\iint_R f(x, y) dx dy$ where *R* is the unit square $[0, 1] \times [0, 1]$ and where $f(x, y) = \sin(\pi(x + y)/2)$.