Intro to Lebesgue Measure Introduction

Johan Bernoulli

Euler

Pica

Gours

Fall, 2015

1 / 52

Henri Lebesgue's Mathematical Genealogy (partial)

Introduction to Lebesgue Measure

Prelude

There were two problems with calculus: there are functions where

• $f(x) \neq \int f'(x) dx$ (c.f., O-G #30) • $f(x) \neq \frac{d}{dx} \left[\int f(x) dx \right]$

In his 1902 dissertation, "Intégrale, long- ueur, aire," Lebesgue wrote, "It thus seems to be natural to search for a definition of the integral which makes integration the inverse operation of differentiation in as large a range as possible."

Leibniz D Bernoulli Cauchy Stieltjes Newton Simpson Fourier Riemann Lebesgue 50 1675 1700 1725 1750 1775 1800 1825 1850 1875 1900 1925 1985		Euler		Weiers	strass		
	Leibniz	D Bernoul	lli Ca	auchy	Stieltjes		
iso 1675 1700 1725 1750 1775 1800 1825 1850 1875 1900 1925 195	Newton	Simpson	Fourier	Riemar	ın I	ebesgue	
	50 1675 170) 1725 1750	1775 1800	1825 1850	1875	1900 1925	1950

Intro to Lebesgue Measure Introduction

What's in a Measure

Goals

The Best measure would be a real-valued set function μ that satisfies

• $\mu(I) = \text{length}(I)$ where *I* is an interval

2 μ is *translation invariant*: $\mu(x + E) = \mu(E)$ for any $x \in \mathbb{R}$

- **3** if $\{E_n\}$ is pairwise disjoint, then $\mu(\bigcup_n E_n) = \sum_n \mu(E_n)$
- dom $(\mu) = \mathcal{P}(\mathbb{R})$ (the power set of \mathbb{R})

THE BAD NEWS:

$$\left. \begin{array}{c} \textit{continuum hypothesis} \\ + \textit{ axiom choice} \end{array} \right\} \implies 1, 3, \text{ and 4 are incompatible} \end{array}$$

THE PLAN:

- Give up on 4. (cf. Vitali)
- 1. and 2. are nonnegotiable
- Weaken 3., then reclaim it

Sigma Algebras

Definition		
Sigma Algeb	ra of Sets	
	A collection of sets A is an <i>algebra</i> iff A is closed under u and complements.	unions
σ -Algebra:	An algebra of sets A is a σ -algebra iff A is closed under countable unions.	
Proposition		
Let A be a no	onempty algebra of sets of reals. Then	
$ullet$ \emptyset and ${\mathbb R}$	$\in \mathcal{A}.$	
• A is clos	sed under intersection.	
Let A be a no	onempty σ -algebra of sets of reals. Then	
• A is clos	sed under countable intersections.	
		MAT 56
WmCB (BauldryWC@	@appstate.edu) MAT 5620, Analysis II Fall,	, 2015 3 /
WmCB (BauldryWC@	@appstate.edu) MAT 5620, Analysis II Fall. Intro to Lebesgue Measure Sigma Algebras	, 2015 3 /
WmCB (BauldryWC)	Intro to Lebesgue Measure Sigma Algebras	2015 3 /
	Intro to Lebesgue Measure Sigma Algebras	2015 3 /
	Intro to Lebesgue Measure Sigma Algebras	, 2015 3 /
Sigma Sa	Intro to Lebesgue Measure Sigma Algebras	2015 3 /
Sigma Sa	Intro to Lebesgue Measure Sigma Algebras	.2015 3 /
Sigma Sa Examples $\mathcal{A} = \{\emptyset, I$ $\mathcal{F} = \{F$ \mathcal{F} is	Intro to Lebesgue Measure Sigma Algebras Samples \mathbb{R} \mathbb{R} : F is finite or F^c is finite} an algebra, the <i>co-finite algebra</i>	.2015 3 /
Sigma Sa Examples 1 $\mathcal{A} = \{\emptyset, I$ 2 $\mathcal{F} = \{F$ 1 \mathcal{F} is 2 \mathcal{F} is	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$,2015 3 /
Sigma Sa Examples $\mathbf{A} = \{\emptyset, I$ $\mathcal{A} = \{F, I\}$ $\mathcal{F} = \{F \in \mathcal{F} \in \mathcal{F} \}$ $\mathcal{F} = \{F \in \mathcal{F} \}$ \mathcal{F}	Intro to Lebesgue Measure Sigma Algebras Sigma Algebras \mathbb{R} $\mathbb{R} : F \text{ is finite or } F^c \text{ is finite}$ an algebra, the <i>co-finite algebra</i> not a σ -algebra	2015 3 /
Sigma Sa Examples $\mathbf{A} = \{\emptyset, I$ $\mathcal{A} = \{F, I\}$ $\mathcal{F} = \{F$ $\mathcal{F} \in \mathcal{F} \text{ is } F \text{ or } e$ $\mathcal{F} = \{F \in \mathcal{F} \in \mathcal{F} \text{ or } e\}$ $\mathcal{F} = \{F \in \mathcal{F} \in \mathcal{F} \in \mathcal{F} \text{ or } e\}$ $\mathcal{F} = \{F \in \mathcal{F} \in \mathcal{F} \in \mathcal{F} \in \mathcal{F} \text{ or } e\}$ $\mathcal{F} = \{F \in \mathcal{F} \in \mathcal{F} \in \mathcal{F} \in \mathcal{F} : e\}$ $\mathcal{F} = \{F \in \mathcal{F} \in \mathcal{F} : e\}$ $\mathcal{F} = \{F \in \mathcal{F} \in \mathcal{F} : e\}$ $\mathcal{F} = \{F \in \mathcal{F} : e\}$	Sigma Algebras amples \mathbb{R} $\mathbb{R} : F \text{ is finite or } F^c \text{ is finite} \}$ an algebra, the <i>co-finite algebra</i> not a σ -algebra each $r \in \mathbb{Q}$, the set $\{r\} \in \mathcal{F}$. But $\bigcup_{r \in \mathbb{Q}} \{r\} = \mathbb{Q} \notin \mathcal{F}$,2015 3 /

Outer Measure

Definition (Lebesgue Outer Measure)

Let $E \subset \mathbb{R}$. Define the *Lebesgue Outer Measure* μ^* of E to be

$$\mu^*(E) = \inf_{E \subset \bigcup I_n} \sum_n \ell(I_n),$$

the infimum of the sums of the lengths of open interval covers of E.

Intro to Lebesgue Measure Outer Measure

Proposition (Monotonicity)

If $A \subseteq B$, then $\mu^*(A) \le \mu^*(B)$.

Proposition

If *I* is an interval, then $\mu^*(I) = \ell(I)$.

MAT 5620: 5

5 / 52

Fall, 2015

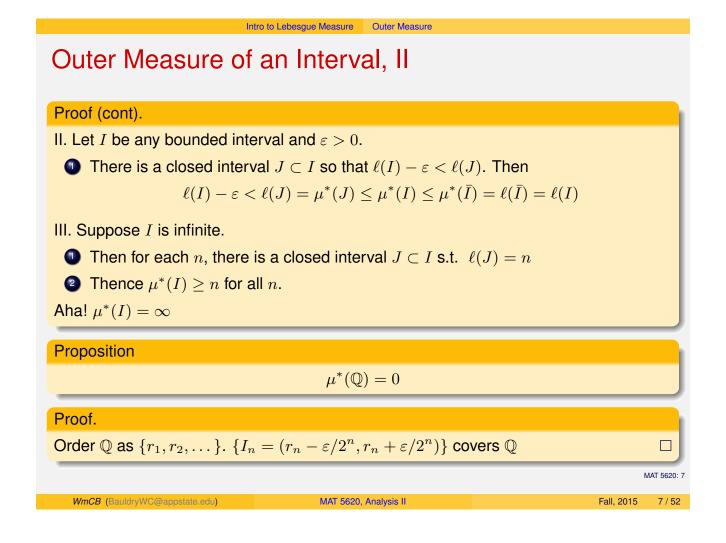
```
WmCB (BauldryWC@appstate.edu)
```

MAT 5620, Analysis II

Intro to Lebesgue Measure Outer Measure

Outer Measure of an Interval

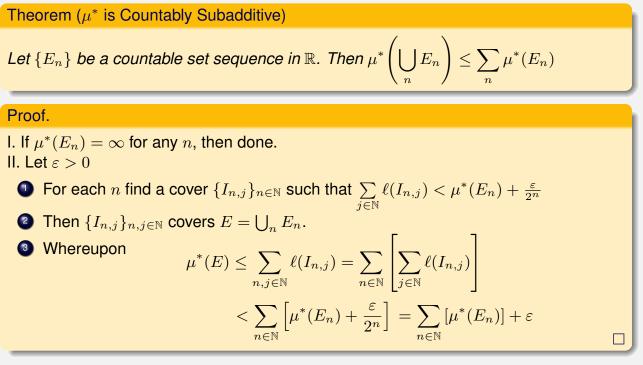
Proof. I. *I* is closed and bounded (compact). Then *I* = [*a*, *b*]. **1** For any ε > 0, [*a*, *b*] ⊂ (*a* − ε, *b* + ε). So μ*(*I*) ≤ *b* − *a* + 2ε. Since ε is arbitrary, μ*(*I*) ≤ *b* − *a*. **2** Let {*I_n*} cover [*a*, *b*] with open intervals. There is a finite subcover for [*a*, *b*]. Order the subcover so that consecutive intervals overlap. Then


$$\sum_{N} \ell(I_k) = (b_1 - a_1) + (b_2 - a_2) + \dots + (b_N - a_N)$$

Rearrange

$$\sum_{N} \ell(I_k) = b_N - (a_N - b_{N-1}) - (a_{N-1} - b_{N-2}) - \dots - (a_2 - b_1) - a_1$$

$$\geq b_N - a_1 > b - a$$


Whence $\mu^*(I) = b - a$.

, and the second se

Intro to Lebesgue Measure

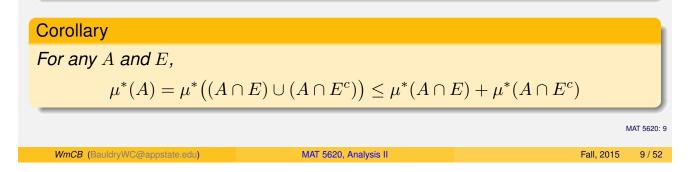
Countable Subadditivity

Outer Measure

Open Holding & Lebesgue's Measure

Corollary

Given $E \subseteq \mathbb{R}$ and $\varepsilon > 0$, there is an open set $O \supseteq E$ s.t.


 $\mu^*(E) \le \mu^*(O) \le \mu^*(E) + \varepsilon$

Definition (Carathéodory's Condition)

A set E is Lebesgue measurable iff for every (test) set A,

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Let \mathfrak{M} be the collection of all Lebesgue measurable sets.

Intro to Lebesgue Measure Lebesgue Measure

Much Ado About Nothing

Theorem

If $\mu^*(E) = 0$, then $E \in \mathfrak{M}$; i.e., E is measurable.

Proof.

Given the previous corollary, we need only show that

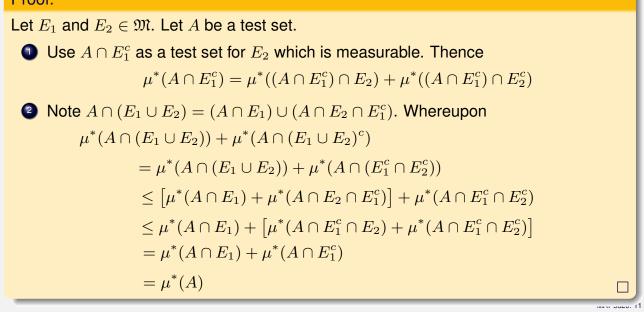
$$\mu^*(A \cap E) + \mu^*(A \cap E^c) \le \mu^*(A)$$

Since A ∩ E ⊂ E, then μ*(A ∩ E) ≤ μ*(E) = 0.
 Since A ∩ E^c ⊂ A, then μ*(A ∩ E^c) ≤ μ*(A).

Whence $\mu^*(A \cap E) + \mu^*(A \cap E^c) \le 0 + \mu^*(A) = \mu^*(A)$.

Corollary

$$\mu^*(\mathbb{Q}) = 0 \implies \mathbb{Q} \in \mathfrak{M}$$


MAT 5620: 10

Unions Work

Theorem

A finite union of measurable sets is measurable.

Proof.

WmCB (BauldryWC@appstate.edu)

MAT 5620, Analysis II

Intro to Lebesgue Measure Lebesgue Measure

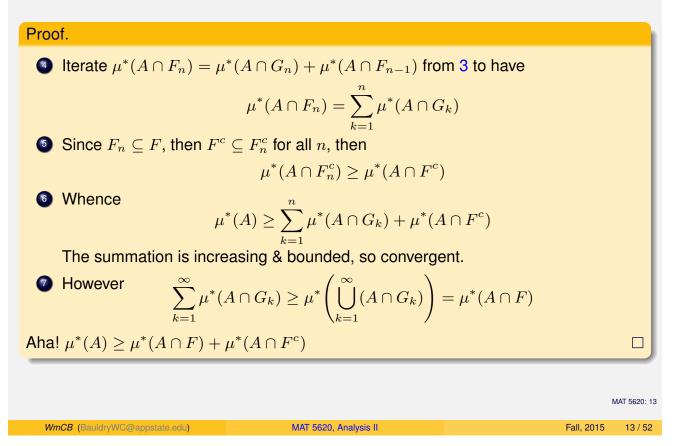
Countable Unions Work

Theorem

The countable union of measurable sets is measurable.

Proof.

Let $E_k \in \mathfrak{M}$ and $E = \bigcup_n E_n$. Choose a test set A. We need to show $\mu^*(A \cap E) + \mu^*(A \cap E^c) \le \mu^*(A)$. Set $F_n = \bigcup^n E_k$ and $F = \bigcup^{\infty} E_k = E$. Define $G_1 = E_1, G_2 = E_2 - E_1, \dots, G_k = E_k - \bigcup^{k-1} E_j$, and $G = \bigcup G_k$. Then (i) $G_i \cap G_j = \emptyset$, $(i \ne j)$ (ii) $F_n = \bigcup^n G_k$ (iii) F = G = ETest F_n with A to obtain $\mu^*(A) = \mu^*(A \cap F_n) + \mu^*(A \cap F_n^c)$ Test G_n with $A \cap F_n$ to obtain $\mu^*(A \cap F_n) = \mu^*((A \cap F_n) \cap G_n) + \mu^*((A \cap F_n) \cap G_n^c) = \mu^*(A \cap G_n) + \mu^*(A \cap F_{n-1})$


AL 2020. 12

Fall, 2015

11 / 52

Countable Unions Work, II

Intro to Lebesgue Measure

Lebesque Measure

Intro to Lebesgue Measure Lebesgue Measure

Everything Works

Corollary

The collection of Lebesgue measurable sets \mathfrak{M} is a σ -algebra.

Corollary

The Borel sets are measurable. (There are measurable, non-Borel sets.)

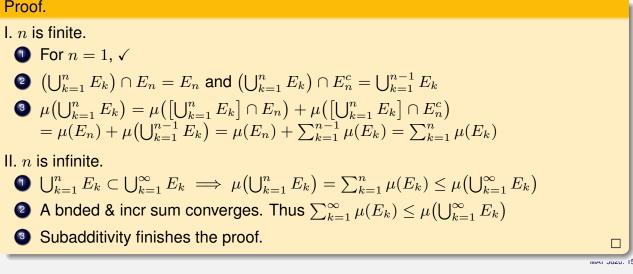
$$\mathcal{B}(\mathbb{R}) \subsetneqq \mathfrak{M} \subsetneqq \mathcal{P}(\mathbb{R})$$

Definition (Lebesgue Measure)

Lebesgue measure μ is μ^* restricted to \mathfrak{M} . So $\mu: \mathfrak{M} \to [0, \infty]$.

Definition (Almost Everywhere)

A property *P* holds *almost everywhere* (a.e.) iff $\mu(\{x : \neg P(x)\}) = 0$.


The Return of Additivity

Theorem

Let $\{E_n\}$ be a countable (finite or infinite) sequence of pairwise disjoint sets in \mathfrak{M} . Then

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k)$$

Proof.

MAT 5620, Analysis II

Intro to Lebesgue Measure Lebesgue Measure

Adding an Example

WmCB (BauldryWC@appstate.edu)

Example Set $E_n = \left(\frac{n-1}{n}, \frac{n}{n+1}\right)$ for $n = 1..\infty$. • The E_n are pairwise disjoint. 2 $\mu(E_n) = \ell(E_n) = \frac{n}{n+1} - \frac{n-1}{n} = \frac{1}{n(n+1)}$ Whence $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = 1.$ NOTA BENE: $\bigcup_{n=0}^{\infty} E_n = (0,1) - \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\}$. Hence $\bigcup_{n=0}^{\infty} E_n = (0,1)$ a.e. MAT 5620: 16

Fall, 2015

15 / 52

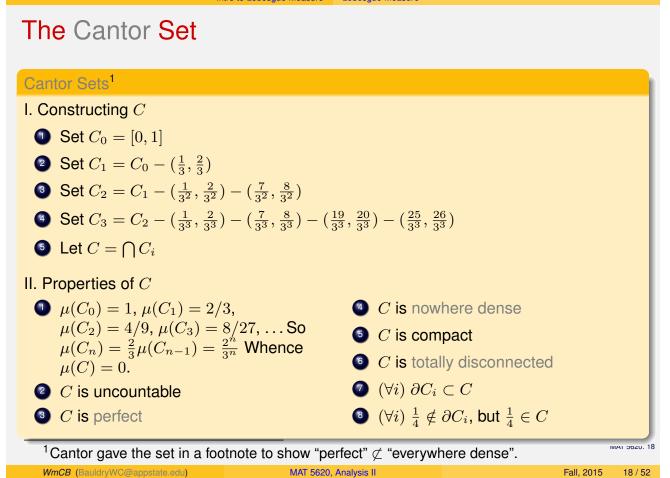
Matryoshka

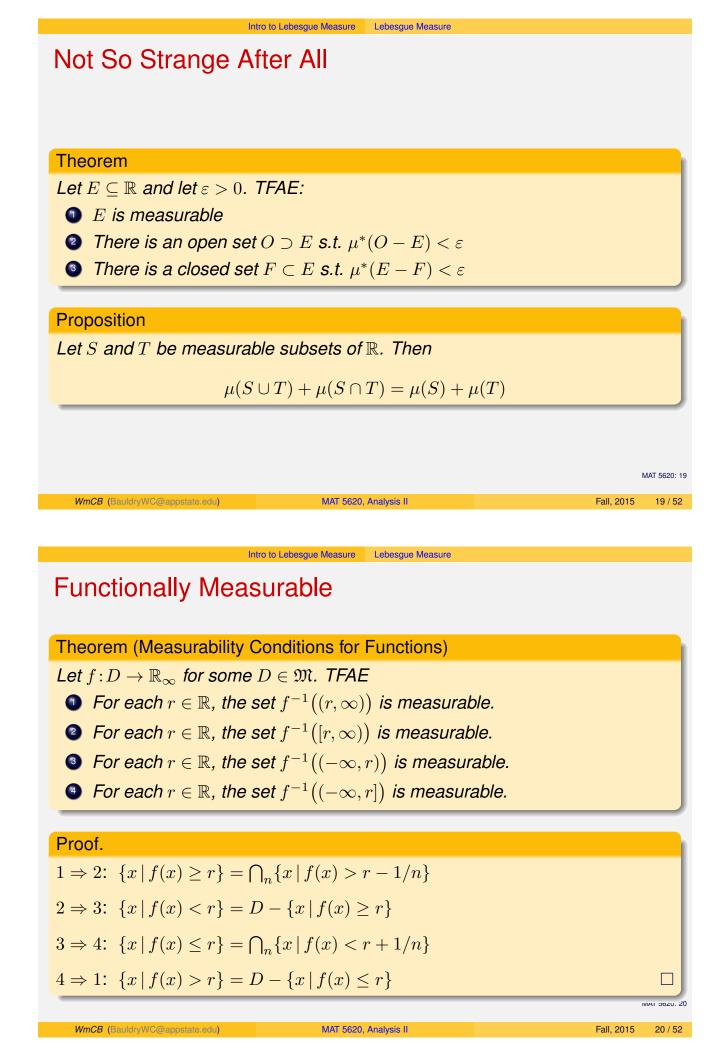
Theorem

If $\{E_n\}$ is a seq of nested, measurable sets with $\mu(E_1) < \infty$, then

$$\mu\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n)$$

Proof.


Fall, 2015


17 / 52

WmCB (BauldryWC@appstate.edu)

Intro to Lebesgue Measure Lebesgue Measure

MAT 5620, Analysis II

The Measurably Functional

Corollary

If *f* satisfies any measurability condition, then $\{x \mid f(x) = r\}$ is measurable for each *r*.

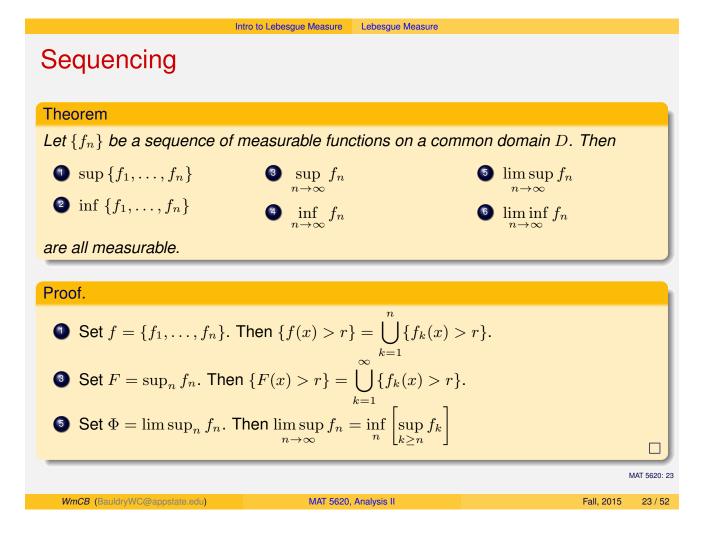
Definition (Measurable Function)

If a function $f: D \to \mathbb{R}_{\infty}$ has measurable domain D and satisfies any of the measurability conditions, then f is *measurable*.

Definition

Step function: $\phi:[a,b] \to \mathbb{R}_{\infty}$ is a *step function* if there is a partition $a = x_0$ $\langle x_1 \langle \cdots \langle x_n = b \text{ s.t. } \phi \text{ is constant on each interval } I_k = (x_{k-1}, x_k), \text{ then } I_k$

$$\phi(x) = \sum_{k=1}^{n} a_k \chi_{I_k}(x)$$


Simple function: A function ψ with range $\{a_1, a_2, \ldots, a_n\}$ where each set $\psi^{-1}(a_k)$ is measurable is a *simple function*.

WmCB (BauldryWC@appstate.edu)

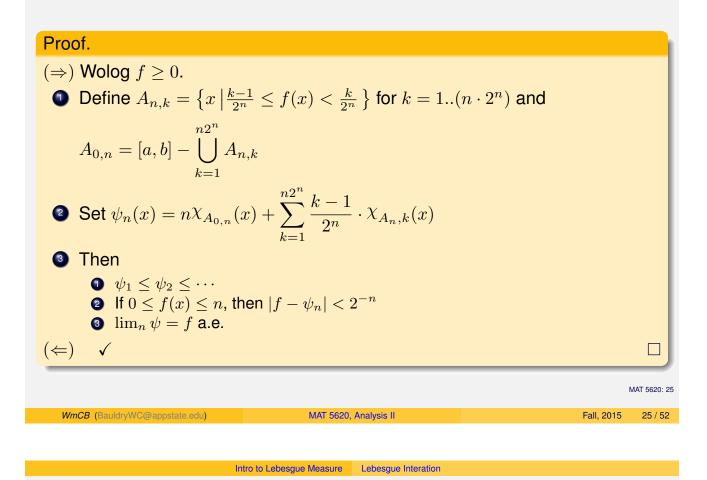
MAT 5620, Analysis II

MAT 5620: 21 Fall, 2015 21 / 52

Zeroing

Theorem

If f is measurable and f = g a.e., then g is measurable.


Definition (Converence Almost Everywhere)

A sequence $\{f_n\}$ converges to f almost everywhere, written as $f_n \to f$ a.e., iff $\mu(\{x: f_n(x) \not\to f(x)\}) = 0.$

Theorem

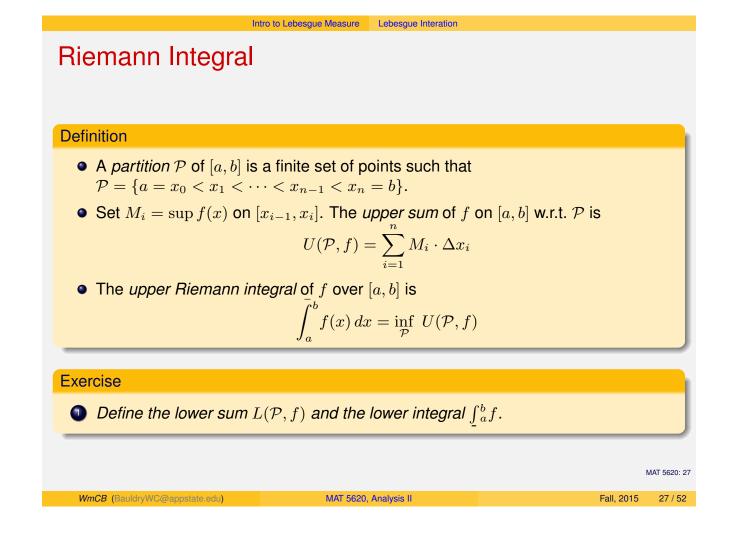
Let $f:[a,b] \to \mathbb{R}$. Then f is measurable iff there is a seq. of simple functions $\{\psi_n\}$ converging to f a.e.

A Simple Proof

Intro to Lebesgue Measure Lebesgue Measure

Integration

We began by looking at two examples of integration problems.


• The Riemann integral over [0, 1] of a function with infinitely many discontinuities didn't exist even though the points of discontinuity formed a set of measure zero.

(The points of discontinuity formed a dense set in [0, 1].)

 The limit of a sequence of Riemann integrable functions did not equal the integral of the limit function of the sequence. (Each function had area ¹/₂, but the limit of the sequence was the zero function.)

We will look at Riemann integration, then Riemann-Stieltjes integration, and last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy, Gauge, Perron, etc. See the list given in the "See also" section of *Integrals* on Mathworld.

Definitely a Riemann Integral

Definition

If $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$, then f is Riemann integrable and is written as $\int_{a}^{b} f(x) dx$ and $f \in \mathfrak{R}$ on [a, b].

Lebesgue Interation

Intro to Lebesgue Measure

Proposition

A function f is Riemann integrable on [a, b] if and only if for every $\epsilon > 0$ there is a partition \mathcal{P} of [a, b] such that

$$U(\mathcal{P}, f) - L(\mathcal{P}, f) < \epsilon.$$

Theorem

If f is continuous on [a, b], then $f \in \mathfrak{R}$ on [a, b].

Theorem

If *f* is bounded on [a, b] with only finitely many points of discontinuity, then $f \in \mathfrak{R}$ on [a, b].

Properties of Riemann Integrals

Proposition

Let f and $g \in \mathfrak{R}$ on [a, b] and $c \in \mathbb{R}$. Then

•
$$\int_a^b (f+g) dx = \int_a^b f dx + \int_a^b g dx$$

- $f \cdot g \in \mathfrak{R}$
- if $f \leq g$, then $\int_a^b f \, dx \leq \int_a^b g \, dx$
- $\left|\int_{a}^{b} f \, dx\right| \leq \int_{a}^{b} |f| \, dx$

WmCB (BauldryWC@appstate.edu)

• $\int_{a}^{b} cf dx = c \int_{a}^{b} f dx$

• Define $F(x) = \int_a^x f(t) dt$. Then *F* is continuous and, if *f* is continuous at x_0 , then $F'(x_0) = f(x_0)$

MAT 5620, Analysis II

• If F' = f on [a, b], then $\int_{a}^{b} f(x) dx = F(b) - F(a)$

MAT 5620: 29

Fall, 2015

Intro to Lebesgue Measure Lebesgue Interation

Riemann Integrated Exercises

Exercises

- If $\int_{a}^{b} |f(x)| dx = 0$, then f = 0.
- 2 Show why $\int_0^1 \chi_{\mathbb{Q}}(x) dx$ does not exist.

Object Define

$$S_n(x) = \sum_{k=1}^{n+1} \left(\frac{k-1}{k} \cdot \chi_{\left[\frac{k-1}{k}, \frac{k}{k+1}\right]}(x) \right) + \frac{n}{n+1} \chi_{\left[\frac{n+1}{n+2}, 1\right]}(x).$$

How many discontinuities does S_n have?
 Prove that S'_n(x) = 0 a.e.
 Calculate ∫₀¹ S_n(x) dx.
 What is S_∞?
 Does ∫₀¹ S_∞(x) dx exist?

(See an animated graph of S_N .)

Riemann-Stieltjes Integral

Definition

- Let $\alpha(x)$ be a monotonically increasing function on [a, b]. Set $\Delta \alpha_i = \alpha(x_i) \alpha(x_{i-1})$.
- Set $M_i = \sup f(x)$ on $[x_{i-1}, x_i]$. The *upper sum* of f on [a, b] w.r.t. α and \mathcal{P} is

$$U(\mathcal{P}, f, \alpha) = \sum_{i=1}^{n} M_i \cdot \Delta \alpha_i$$

• The upper Riemann-Stieltjes integral of f over [a, b] w.r.t. α is

$$\int_{a}^{b} f(x) \, d\alpha(x) = \inf_{\mathcal{P}} U(\mathcal{P}, f, \alpha)$$

Exercise

WmCB (BauldryWC@appstate.edu)

• Define the lower sum $L(\mathcal{P}, f, \alpha)$ and lower integral $\int_a^b f d\alpha$.

MAT 5620: 3

31 / 52

Fall, 2015

Intro to Lebesgue Measure Lebesgue Interation

MAT 5620, Analysis II

Definitely a Riemann-Stieltjes Integral

Definition

If $\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha$, then *f* is Riemann-Stieltjes integrable and is written as $\int_{a}^{b} f(x) \, d\alpha(x)$ and $f \in \Re(\alpha)$ on [a, b].

Proposition

A function f is Riemann-Stieltjes integrable w.r.t. α on [a, b] iff for every $\epsilon > 0$ there is a partition \mathcal{P} of [a, b] such that

$$U(\mathcal{P}, f, \alpha) - L(\mathcal{P}, f, \alpha) < \epsilon.$$

Theorem

If f is continuous on [a, b], then $f \in \mathfrak{R}(\alpha)$ on [a, b].

Theorem

If *f* is bounded on [a, b] with only finitely many points of discontinuity and α is continuous at each of *f*'s discontinuities, then $f \in \Re(\alpha)$ on [a, b].

Properties of Riemann-Stieltjes Integrals

Proposition

Let f and $g \in \mathfrak{R}(\alpha)$ and in β on [a, b] and $c \in \mathbb{R}$. Then

- $\int_{a}^{b} cf \, d\alpha = c \int_{a}^{b} f \, d\alpha$ and $\int_{a}^{b} f \, d(c\alpha) = c \int_{a}^{b} f \, d\alpha$
- $\int_{a}^{b} (f+g) d\alpha = \int_{a}^{b} f d\alpha + \int_{a}^{b} g d\alpha$ and $\int_{a}^{b} f d(\alpha + \beta) = \int_{a}^{b} f d\alpha + \int_{a}^{b} f d\beta$
- $f \cdot g \in \mathfrak{R}(\alpha)$
- if $f \leq g$, then $\int_a^b f \, d\alpha \leq \int_a^b g \, d\alpha$
- $\left| \int_{a}^{b} f \, d\alpha \right| \leq \int_{a}^{b} |f| \, d\alpha$
- Suppose that $\alpha' \in \Re$ and f is bounded. Then $f \in \Re(\alpha)$ iff $f\alpha' \in \Re$ and $\int_a^b f \, d\alpha = \int_a^b f \cdot \alpha' \, dx$

MAT 5620: 33

33 / 52

Fall, 2015

```
WmCB (BauldryWC@appstate.edu)
```

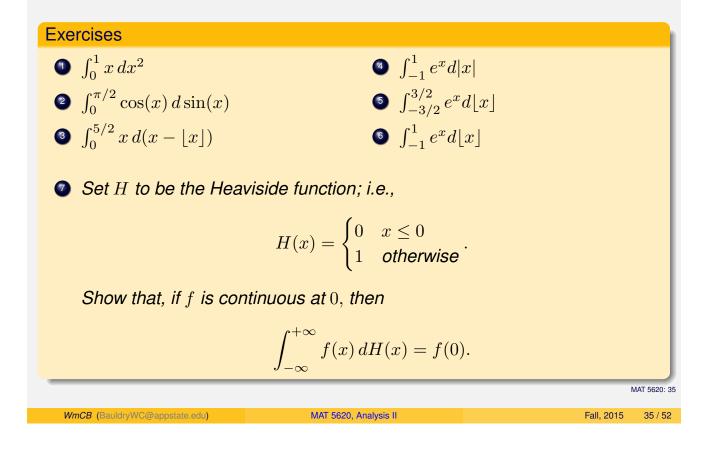
MAT 5620, Analysis II

Intro to Lebesgue Measure Lebesgue Interation

Riemann-Stieltjes Integrals and Series

Proposition

If *f* is continuous at $c \in (a, b)$ and $\alpha(x) = r$ for $a \le x < c$ and $\alpha(x) = s$ for $c < x \le b$, then


$$\int_{a}^{b} f \, d\alpha = f(c) \left(\alpha(c+) - \alpha(c-) \right)$$
$$= f(c) \left(s - r \right)$$

Proposition

Let $\alpha = \lfloor x \rfloor$, the greatest integer function. If f is continuous on [0, b], then

$$\int_0^b f(x) \, d\lfloor x \rfloor = \sum_{k=1}^{\lfloor b \rfloor} f(k)$$

Riemann-Stieltjes Integrated Exercises

Lebesgue Interation

Lebesgue Integral

We start with simple functions.

Definition

A function has *finite support* if it vanishes outside a finite interval.

Intro to Lebesgue Measure

Definition

Let ϕ be a measurable simple function with finite support. If

$$\phi(x) = \sum_{i=1}^{n} a_i \chi_{A_i}(x)$$
 is a representation of ϕ , then

$$\int \phi(x) \, dx = \sum_{i=1}^n a_i \cdot \mu(A_i)$$

Definition

If *E* is a measurable set, then
$$\int_E \phi = \int \phi \cdot \chi_E$$

Integral Linearity

Proposition

If ϕ and ψ are measurable simple functions with finite support and $a, b \in \mathbb{R}$, then $\int (a\phi + b\psi) = a \int \phi + b \int \psi$. Further, if $\phi \leq \psi$ a.e., then $\int \phi \leq \int \psi$.

Proof (sketch).

I. Let
$$\phi = \sum_{K}^{N} \alpha_i \chi_{A_i}$$
 and $\psi = \sum_{K}^{M} \beta_i \chi_{B_i}$. Then show $a\phi + b\psi$ can be written as $a\phi + b\psi = \sum_{K} (a\alpha_{k_i} + b\beta_{k_j})\chi_{E_k}$ for the properly chosen E_k . Set A_0 and B_0 to be zero sets of ϕ and ψ . (Take $\{E_k : k = 0..K\} = \{A_j \cap B_k : j = 0..N, k = 0..M\}$.)
II. Use the definition to show $\int \psi - \int \phi = \int (\psi - \phi) \ge \int 0 = 0$.

WmCB (BauldryWC@appstate.edu)

MAT 5620, Analysis II

Intro to Lebesgue Measure Lebesgue Interation

Steps to the Lebesgue Integral

Proposition

Let f be bounded on $E \in \mathfrak{M}$ with $\mu(E) < \infty$. Then f is measurable iff

$$\inf_{f \le \psi} \int_E \psi = \sup_{f \ge \phi} \int_E \phi$$

for all simple functions ϕ and ψ .

Proof.

I. Suppose f is bounded by M. Define

$$E_k = \left\{ x : \frac{k-1}{n} M < f(x) \le \frac{k}{n} M \right\}, \qquad -n \le k \le n$$

The E_k are measurable, disjoint, and have union E. Set

$$\psi_n(x) = \frac{M}{n} \sum_{-n}^n k \, \chi_{E_k}(x), \qquad \phi_n(x) = \frac{M}{n} \sum_{-n}^n (k-1) \, \chi_{E_k}(x)$$

WmCB (BauldryWC@appstate.edu)

Fall, 2015

37 / 52

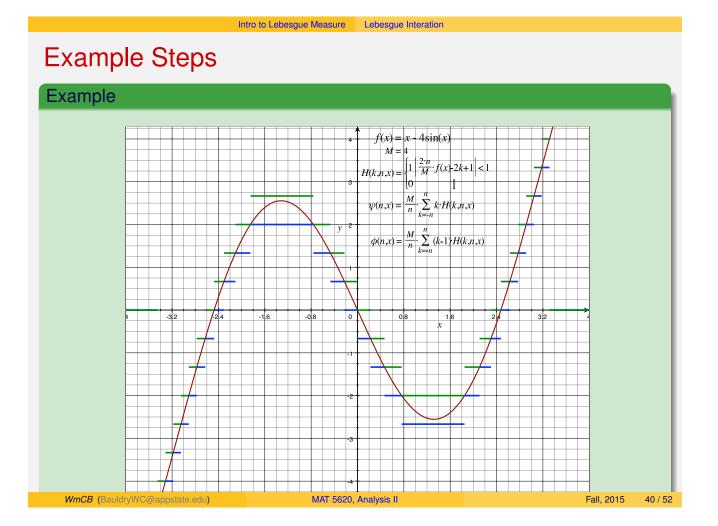
SLI (cont)

(proof cont).

Then $\phi_n(x) \leq f(x) \leq \psi(x)$, and so

•
$$\inf \int_E \psi \le \int_E \psi_n = \frac{M}{n} \sum_{k=-n}^n k \,\mu(E_k)$$

• $\sup \int_E \phi \ge \int_E \phi_n = \frac{M}{n} \sum_{k=-n}^n (k-1) \,\mu(E_k)$


Thus $0 \leq \inf \int_E \psi - \sup \int_E \phi \leq \frac{M}{n} \mu(E)$. Since *n* is arbitrary, equality holds. II. Suppose that $\inf \int_E \psi = \sup \int_E \phi$. Choose ϕ_n and ψ_n so that $\phi_n \leq f \leq \psi_n$ and $\int_E (\psi_n - \phi_n) < \frac{1}{n}$. The functions $\psi^* = \inf \psi_n$ and $\phi^* = \sup \phi_n$ are measurable and $\phi^* \leq f \leq \psi^*$. The set $\Delta = \{x : \phi^*(x) < \psi^*(x)\}$ has measure 0. Thus $\phi^* = \psi^*$ almost everywhere, so $\phi^* = f$ a.e. Hence *f* is measurable.

MAT	5620:	39

```
WmCB (BauldryWC@appstate.edu)
```

MAT 5620, Analysis II

Fall, 2015 39 / 52

Defining the Lebesgue Integral

Definition

If *f* is a bounded measurable function on a measurable set *E* with $m(E) < \infty$, then

$$\int_E f = \inf_{\psi \ge f} \int_E \psi$$

for all simple functions $\psi \geq f$.

Proposition

Let *f* be a bounded function defined on E = [a, b]. If *f* is Riemann integrable on [a, b], then *f* is measurable on [a, b] and

$$\int_E f = \int_a^b f(x) \, dx;$$

MAT 5620, Analysis II

the Riemann integral of f equals the Lebesgue integral of f.

MAT 5620: 41

41 / 52

Fall, 2015

WmCB (BauldryWC@appstate.edu)

Intro to Lebesgue Measure Lebesgue Interation

Properties of the Lebesgue Integral

Proposition

If f and g are measurable on E, a set of finite measure, then

•
$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g$$

• if $f = g$ a.e., then $\int_{E} f = \int_{E} g$

• if
$$f \leq g$$
 a.e., then $\int_{E}^{J_{E}} f \leq \int_{E}^{J_{E}} g$

•
$$\left| \int_{E} f \right| \leq \int_{E} |f|$$

• if $a \leq f \leq b$, then $a \cdot \mu(E) \leq \int_{E} f \leq b \cdot \mu(E)$
• if $A \cap B = \emptyset$, then $\int f = \int f + \int f$

$$B = \emptyset, \text{ then } \int_{A \cup B} J = \int_A J + \int_B$$

Lebesgue Integral Examples

Examples

• Let
$$T(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q} \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$
. Then $\int_{[0,1]} T = \int_0^1 T(x) \, dx$.
• Let $\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$. Then $\int_{[0,1]} \chi_{\mathbb{Q}} \neq \int_0^1 \chi_{\mathbb{Q}}(x) \, dx$.
• Define
 $f_n(x) = \sum_{k=1}^{n+1} \left(\frac{k-1}{k} \cdot \chi_{\left[\frac{k-1}{k}, \frac{k}{k+1}\right)}(x) \right) + \frac{n}{n+1} \chi_{\left[\frac{n+1}{n+2}, 1\right]}(x)$.
Then
• f_n is a step function, hence integrable
• $f'_n(x) = 0$ a.e.
• $\frac{1}{4} \leq \int_{[0,1]} f_n = \int_0^1 f_n(x) \, dx < \frac{3}{8}$
MUMING (2004/W2019051)

Intro to Lebesgue Measure Lebesgue Interation

Extending the Integral Definition

Definition

Let f be a nonnegative measurable function defined on a measurable set E. Define h

$$_{E} f = \sup_{h < f} \int_{E} f$$

where h is a bounded measurable function with finite support.

Proposition

If f and g are nonnegative measurable functions, then

•
$$\int_{E} c f = c \int_{E} f$$
 for $c > 0$
• $\int_{E} f + g = \int_{E} f + \int_{E} g$

• If
$$f \leq g$$
 a.e., then $\int_E f \leq \int_E g$

General Lebesgue's Integral

Definition

Set $f^+(x) = \max\{f(x), 0\}$ and $f^-(x) = \max\{-f(x), 0\}$. Then $f = f^+ - f^-$ and $|f| = f^+ + f^-$. A measurable function f is integrable over E iff both f^+ and f^- are integrable over E, and then $\int_E f = \int_E f^+ - \int_E f^-$.

Proposition

Let *f* and *g* be integrable over *E* and let $c \in \mathbb{R}$. Then

1
$$\int_{E} cf = c \int_{E} f$$
2
$$\int_{E} f + g = \int_{E} f + \int_{E} g$$
3 if $f \leq g$ a.e., then $\int_{E} f \leq \int_{E} g$
4 if A, B are disjoint m'ble subsets of $E, \int_{A \cup B} f = \int_{A} f + \int_{B} f$
MAT 5620. Applying I

Intro to Lebesgue Measure Convergence Theorems

Convergence Theorems

Theorem (Bounded Convergence Theorem)

Let $\{f_n : E \to \mathbb{R}\}\$ be a sequence of measurable functions converging to f with $m(E) < \infty$. If there is a uniform bound M for all f_n , then

$$\int_E \lim_n f_n = \lim_n \int_E f_n$$

Proof (sketch).

Let $\epsilon > 0$.

1
$$f_n$$
 converges "almost uniformly;" i.e., $\exists A, N$ s.t. $m(A) < \frac{\epsilon}{4M}$ and, for $n > N$,
 $x \in E - A \implies |f_n(x) - f(x)| \le \frac{\epsilon}{2m(E)}$.
2 $\left| \int_E f_n - \int_E f \right| = \left| \int_E f_n - f \right| \le \int_E |f_n - f| = \left(\int_{E-A} + \int_A \right) |f_n - f|$
3 $\int_{E-A} |f_n - f| + \int_A |f_n| + |f| \le \frac{\epsilon}{2m(E)} \cdot m(E) + 2M \cdot \frac{\epsilon}{4M} = \epsilon$

Intro to Lebesgue Measure Convergence Theorems

Lebesgue's Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)

Let $\{f_n : E \to \mathbb{R}\}\$ be a sequence of measurable functions converging a.e. on E with $m(E) < \infty$. If there is an integrable function g on E such that $|f_n| \le g$ then

$$\int_E \lim_n f_n = \lim_n \int_E f_n$$

Lemma

Under the conditions of the DCT, set $g_n = \sup_{k \ge n} \{f_n, f_{n+1}, ...\}$ and $h_n = \inf_{k \ge n} \{f_n, f_{n+1}, ...\}$. Then g_n and h_n are integrable and $\lim g_n = f = \lim h_n$ a.e.

Proof of DCT (sketch).

- Both g_n and h_n are monotone and converging. Apply MCT.
- $h_n \leq f_n \leq g_n \implies \int_E h_n \leq \int_E f_n \leq \int_E g_n$.

WmCB (BauldryWC@appstate.edu)

MAT 5620, Analysis II

Intro to Lebesgue Measure Convergence Theorems

Increasing the Convergence

Theorem (Fatou's Lemma)

If $\{f_n\}$ is a sequence of measurable functions converging to f a.e. on E, then

$$\int_E \lim_n f_n \le \liminf_n \int_E f_n$$

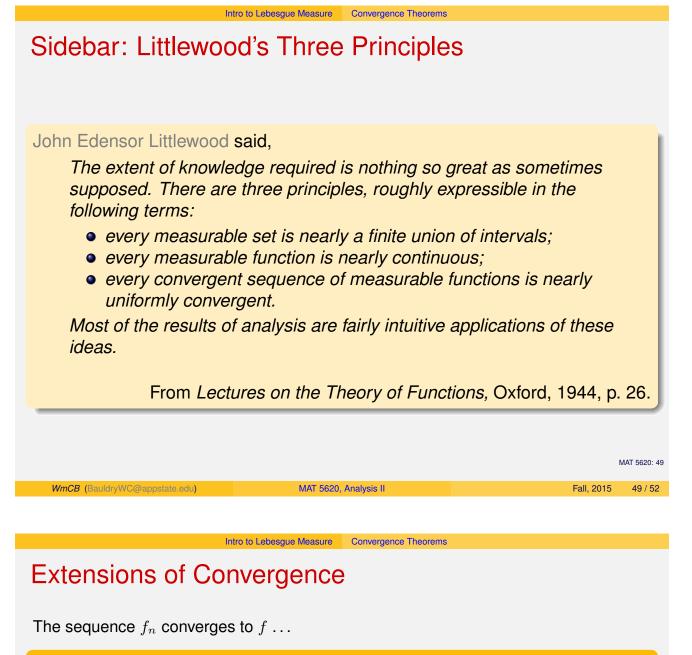
Theorem (Monotone Convergence Theorem)

If $\{f_n\}$ is an increasing sequence of nonnegative measurable functions converging to f, then

$$\int \lim_{n} f_n = \lim_{n} \int f_n$$

Corollary (Beppo Levi Theorem (cf.))

If $\{f_n\}$ is a sequence of nonnegative measurable functions, then


$$\int \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int f_n$$

WmCB (BauldryWC@appstate.edu)

MAT 5620: 48

MAT 5620: 47

Fall, 2015 47 / 52

Definition (Convergence Almost Everywhere)

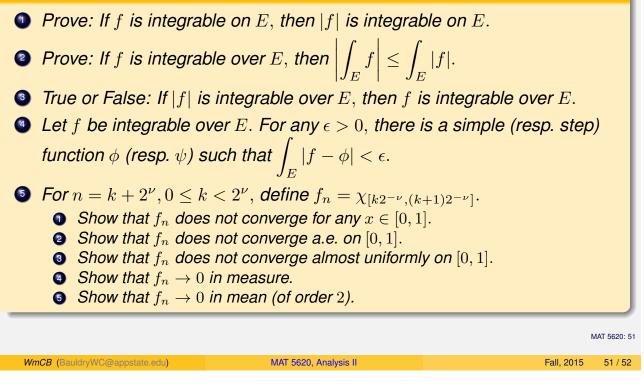
almost everywhere if $m(\{x : f_n(x) \not\rightarrow f(x)\}) = 0.$

Definition (Convergence Almost Uniformly)

almost uniformly on E if, for any $\epsilon > 0$, there is a set $A \subset E$ with $m(A) < \epsilon$ so that f_n converges uniformly on E - A.

Definition (Convergence in Measure)

in measure if, for any $\epsilon > 0$, $\lim_{n \to \infty} m(\{x : |f_n(x) - f(x)| \ge \epsilon\}) = 0$.


Definition (Convergence in Mean (of order p > 1))

in mean if
$$\lim_{n \to \infty} ||f_n - f||_p = \lim_{n \to \infty} \left[\int_E |f - f_n|^p \right]^{1/p} = 0$$

Integrated Exercises

Intro to Lebesgue Measure

Exercises

Convergence Theorems

Convergence Theorems

References

Texts on analysis, integration, and measure:

- Mathematical Analysis, T. Apostle
- Principles of Mathematical Analysis, W. Rudin

Intro to Lebesgue Measure

- Real Analysis, H. Royden
- Lebesgue Integration, S. Chae
- Geometric Measure Theory, F. Morgan

Comparison of different types of integrals:

- A Garden of Integrals, F Burk
- Integral, Measure, and Derivative: A Unified Approach, G. Shilov and B. Gurevich