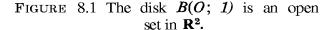
Exercises 245

Circular disk



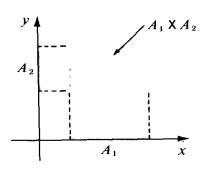


FIGURE 8.2 The Cartesian product of two open intervals is an open rectangle.

of A, x A,. Since A_1 and A_2 are open in \mathbb{R}^1 there is a 1-ball $B(a_1; r_1)$ in A_1 and a 1-ball $B(a_2; r_2)$ in A. Let $r = \min \{r_1, r_2\}$. We can easily show that the 2-ball $B(a; r) \subseteq$ $A_1 \times A_2$. In fact, if $x = (x_1, x_2)$ is any point of B(a; r) then ||x - a|| < r, so $|x_1 - a_1| < r$ and $|x_2 - a_2| < r_2$. Hence $x_1 \in B(a_1; r_1)$ and $x_2 \in B(a_2; r_2)$. Therefore $x_1 \in A$, and $x_2 \in A_2$, so $(x_1, x_2) \in A_1 \times A_1$. This proves that every point of B(a; r) is in $A_1 \times A_2$. Therefore every point of A, $\times A_2$ is an interior point, so A, $\times A_2$ is open.

The reader should realize that an open subset of \mathbb{R}^1 is no longer an open set when it is considered as a subset of R², because a subset of R¹ cannot contain a 2-ball.

DEFINITIONS OF EXTERIOR AND BOUNDARY. A point x is said to be exterior to a set S in \mathbf{R}^n if there is an n-ball B(x) containing no points of S. The set of all points in \mathbf{R}^n exterior to S is culled the exterior of S and is denoted by ext S. A point which is neither exterior to S nor an interior point of S is called a boundary point of S. The set of all boundary points of S is called the boundary of S and is denoted by ∂S .

These concepts are illustrated in Figure 8.1. The exterior of S is the set of all x with ||x|| > 1. The boundary of S consists of all x with ||x|| = 1.

8.3 Exercises

- 1. Let be a scalar field defined on a set S and let c be a given real number. The set of all points x in S such that f(x) = c is called a *level set* off. (Geometric and physical problems dealing with level sets will be discussed later in this chapter.) For each of the following scalar fields. S is the whole space \mathbb{R}^n . Make a sketch to describe the level sets corresponding to the given values of c.
 - (a) $f(x, y) = x^2 + y^2$,

c = 0, 1, 4, 9.

(b) $f(x, y) = e^{xy}$,

- $c = e^{-2}, e^{-1}, 1, e, e^2, e^3.$

- 2. In each of the following cases, let S be the set of all points (x, y) in the plane satisfying the given inequalities. Make a sketch showing the set S and explain, by a geometric argument, whether or not S is open. Indicate the boundary of S on your sketch.
 - (a) $x^2 + y^2 < 1$.

(h) $1 \le x \le 2$ and 3 < y < 4.

(b) $3x^2 + 2y^2 < 6$.

(i) 1 < x < 2 and y > 0.

(c) |x| < 1 and |y| < 1.

(j) $x \ge y$. (k) x > y.

(d) $x \ge 0$ and y > 0.

(1) $y > x^2$ and |x| < 2.

(e) $|x| \le 1$ and $|y| \le 1$.

(i) y > x and |x| < 2. (m) $(x^2 + y^2 - 1)(4 - x^2 - y^2) > 0$.

(f) x > 0 and y < 0.

(n) $(2x - x^2 - y^2)(x^2 + y^2 - x) > 0$.

- (g) xy < 1.
- 3. In each of the following, let S be the set of all points (x, y, z) in 3-space satisfying the given inequalities and determine whether or not S is open.
 - (a) $z^2 x^2 y^2 1 > 0$.
 - (b) |x| < 1, |y| < 1, and |z| < 1.
 - (c) x + y + z < 1.
 - (d) $|x| \le 1$, |y| < 1, and |z| < 1.
 - (e) x + y + z < 1 and x > 0, y > 0, z > 0.
 - (f) $x^2 + 4y^2 + 4z^2 2x + 16y + 40z + 113 < 0$.
- 4. (a) If A is an open set in n-space and if $x \in A$, show that the set $A \{x\}$, obtained by removing the point x from A, is open.
 - (b) If A is an open interval on the real line and B is a closed subinterval of A, show that A B is open.
 - (c) If A and B are open intervals on the real line, show that $A \cup B$ and $A \cap B$ are open.
 - (d) If A is a closed interval on the real line, show that its complement (relative to the whole real line) is open.
- 5. Prove the following properties of open sets in \mathbb{R}^n :
 - (a) The empty set \emptyset is open.
 - (b) \mathbf{R}^n is open.
 - (c) The union of any collection of open sets is open.
 - (d) The intersection of a finite collection of open sets is open.
 - (e) Give an example to show that the intersection of an infinite collection of open sets is not necessarily open.

Closed sets. A set Sin \mathbb{R}^n is called closed if its complement \mathbb{R}^n — S is open. The next three exercises discuss properties of closed sets.

- 6. In each of the following cases, let S be the set of all points (x, y) in \mathbb{R}^2 satisfying the given conditions. Make a sketch showing the set S and give a geometric argument to explain whether S is open, closed, both open and closed, or neither open nor closed.
 - (a) $x^2 + y^2 \ge 0$.

(g) $1 \le x \le 2, 3 \le y \le 4$.

(b) $x^2 + y^2 < 0$.

(h) $1 \le x \le 2, 3 \le y < 4$.

(c) $x^2 + y^2 \le 1$.

(i) $y = x^2$.

(d) $1 < x^2 + y^2 < 2$.

(j) $y \ge x^2$.

(e) $1 \le x^2 + y^2 \le 2$.

(k) $y \ge x^2$ and |x| < 2.

(f) $1 < x^2 + y^2 \le 2$.

- (1) $y \ge x^2$ and $|x| \le 2$.
- 7. (a) If A is a closed set in n-space and x is a point not in A, prove that $A = \{x\}$ is also closed.
 - (b) Prove that a closed interval [a, b] on the real line is a closed set.
 - (c) If A and B are closed intervals on the real line, show that $A \cup B$ and $A \cap B$ are closed.

 $[\]dagger$ If A and B are sets, the difference A - B (called the *complement of B relative to A*) is the set of all elements of A which are not in B.

- 8. Prove the following properties of closed sets in \mathbb{R}^n . You may use the results of Exercise 5.
 - (a) The empty set \varnothing is closed.
 - (b) \mathbf{R}^n is closed.
 - (c) The intersection of any collection of closed sets is closed.
 - (d) The union of a finite number of closed sets is closed.
 - (e) Give an example to show that the union of an infinite collection of closed sets is not necessarily closed.
- 9. Let S be a subset of \mathbb{R}^n .
 - (a) Prove that both int S and ext S are open sets.
 - (b) Prove that $\mathbf{R}^n = (\text{int S}) \cup (\text{ext S}) \cup \partial S$, a union of disjoint sets, and use this to deduce that the boundary ∂S is always a closed set.
- 10. Given a set S in \mathbb{R}^n and a point \mathbf{x} with the property that every ball $B(\mathbf{x})$ contains both interior points of S and points exterior to S. Prove that \mathbf{x} is a boundary point of S. Is the converse statement true? That is, does every boundary point of S necessarily have this property?
- 11. Let S be a subset of \mathbb{R}^n . Prove that ext $S = \operatorname{int}(\mathbb{R}^n S)$.
- 12. Prove that a set S in \mathbb{R}^n is closed if and only if $S = (\text{int } S) \cup \partial S$.

8.4 Limits and continuity

The concepts of limit and continuity are easily extended to scalar and vector fields. We shall formulate the definitions for vector fields; they apply also to scalar fields.

We consider a function $f: S \to \mathbb{R}^m$, where S is a subset of \mathbb{R}^n . If $a \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$ we write

(8.1)
$$\lim_{x \to a} f(x) = b \quad (\text{or}, f(x) \to b \text{ as } x \to a)$$

to mean that

(8.2)
$$\lim_{\|x-a\|\to 0} \| f(x) - b\| = 0.$$

The limit symbol in equation (8.2) is the usual limit of elementary calculus. In this definition it is not required that be defined at the point a itself.

If we write h = x - a, Equation (8.2) becomes

$$\lim_{\|\boldsymbol{h}\|\to 0} \|\boldsymbol{f}(\boldsymbol{a}+\boldsymbol{h})-\boldsymbol{b}\| = 0.$$

For points in \mathbb{R}^2 we write (x, y) for x and (a, b) for a and express the limit relation (8.1) as follows:

$$\lim_{(x,y)\to(a,b)} f(x, y) = b.$$

For points in \mathbb{R}^3 we put x = (x, y, z) and a = (a, b, c) and write

$$\lim_{(x,y,z)\to(a,b,c)} f(x, y, z) = b$$

A function f is said to be *continuous* at a if f is defined at a and if

$$\lim_{x \to a} f(x) = f(a).$$

We say f is continuous on a set S iff is continuous at each point of S.