Properties of the Gradient

Denote the set of functions f from X to Y by Y^X . Then a scalar field $f \in \mathbb{R}^{(\mathbb{R}^n)}$.

Definition 1. For $f : \mathbb{R}^n \to \mathbb{R}$, define

$$\nabla f(\vec{x}) = \left\langle \frac{\partial}{\partial x_1} f(\vec{x}), \ \frac{\partial}{\partial x_2} f(\vec{x}), \ \dots, \ \frac{\partial}{\partial x_n} f(\vec{x}) \right\rangle.$$

Then $\nabla : \mathbb{R}^{(\mathbb{R}^n)} \to (\mathbb{R}^n)^{(\mathbb{R}^n)}$ and as an operator $\nabla = \left\langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \ldots, \frac{\partial}{\partial x_n} \right\rangle$.

Proposition 1. Let $f : \mathbb{R}^n \to \mathbb{R}$.

1. If f is differentiable at \vec{a} , then all partial derivatives exist and

$$f(\vec{a}; \vec{y}) = \nabla f(\vec{a}) \cdot \vec{y}$$
$$= \|f(\vec{a})\| \cdot \|\vec{y}\| \cdot \cos(\theta)$$

2. If all partial derivatives of f exist at \vec{a} and are continuous on an open ball containing \vec{a} , then f is differentiable at \vec{a} .

Proposition 2. Let f be differentiable at \vec{a} .

1. The first-order Taylor formula for f at \vec{a} is

$$f(\vec{a} + \vec{v}) = f(\vec{a}) + \nabla f(\vec{a}) \cdot \vec{v} + \|\vec{v}\| \cdot E(\vec{a}, \vec{v})$$

2. The hyperplane tangent to f at \vec{a} is given by

$$T(\vec{x}) = f(\vec{a}) + \nabla f(\vec{a}) \cdot (\vec{x} - \vec{a})$$

Theorem 3. Let f and g be scalar fields that are differentiable on the open set S and let $c \in \mathbb{R}$. Then

- 1. *if f is constant, then* $\nabla f = \vec{0}$
- 2. $\nabla(f + g) = \nabla f + \nabla g$
- 3. $\nabla(c \cdot f) = c \cdot \nabla f$

4.
$$\nabla(f \cdot g) = (\nabla f) \cdot g + f \cdot (\nabla g)$$

5.
$$\nabla(f/g) = \frac{(\nabla f) \cdot g - f \cdot (\nabla g)}{g^2}$$
 where $g \neq 0$

Theorem 4 (Chain Rule for Scalar Fields). Let $f : \mathbb{R}^n \to \mathbb{R}$ and $r : [a, b] \to \mathbb{R}^n$ with $r(t_0) = \vec{a}$. Then

$$\frac{d}{dt}(f \circ r)(t_0) = \nabla f(\vec{a}) \cdot r'(t_0)$$

Proof. (*Main Idea:*) Consider Δg for t to t + h with f's Taylor form using $\vec{y} = r(t + h) - r(t)$ to obtain

$$\frac{\Delta g}{h} = \nabla f(\vec{a}) \cdot \frac{\Delta r}{h} + \frac{\|\Delta r\|}{h} \cdot E(\vec{a}, \vec{y})$$

Then let $h \to 0$.