Integrating Factors

Definition (Exact ODE)

An ODE
$$M(x, y) dx + N(x, y) dy = 0$$
 is exact iff $\frac{\partial}{\partial y}M = \frac{\partial}{\partial x}N$.

Definition (Exact ODE)

An ODE
$$M(x, y) dx + N(x, y) dy = 0$$
 is exact iff $\frac{\partial}{\partial y}M = \frac{\partial}{\partial x}N$.

Theorem (Integrating Factor)

Consider the ODE M dx + N dy = 0.

• If
$$\frac{1}{N} \cdot \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] = h(x)$$
, then set $\mu(x) = e^{\int h(x) \, dx}$.
• If $\frac{1}{M} \cdot \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] = k(y)$, then set $\mu(x) = e^{\int k(y) \, dy}$.

The ODE $\mu \cdot M dx + \mu \cdot N dy = 0$ is exact.

Definition (Exact ODE)

An ODE
$$M(x, y) dx + N(x, y) dy = 0$$
 is exact iff $\frac{\partial}{\partial y}M = \frac{\partial}{\partial x}N$.

Theorem (Integrating Factor)

Consider the ODE M dx + N dy = 0.

• If
$$\frac{1}{N} \cdot \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] = h(x)$$
, then set $\mu(x) = e^{\int h(x) \, dx}$.
• If $\frac{1}{M} \cdot \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] = k(y)$, then set $\mu(x) = e^{\int k(y) \, dy}$.

The ODE $\mu \cdot M dx + \mu \cdot N dy = 0$ is exact.

Ex: 1. Solve: $y' = (x - y^2)/(2y)$.

Definition (Exact ODE)

An ODE
$$M(x, y) dx + N(x, y) dy = 0$$
 is exact iff $\frac{\partial}{\partial y}M = \frac{\partial}{\partial x}N$.

Theorem (Integrating Factor)

Consider the ODE M dx + N dy = 0.

• If
$$\frac{1}{N} \cdot \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] = h(x)$$
, then set $\mu(x) = e^{\int h(x) \, dx}$.
• If $\frac{1}{M} \cdot \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] = k(y)$, then set $\mu(x) = e^{\int k(y) \, dy}$.

The ODE $\mu \cdot M dx + \mu \cdot N dy = 0$ is exact.

Ex: 1. Solve:
$$y' = (x - y^2)/(2y)$$
.
2. The ODE $y' = y/x$ has *IFs*: a) x^{-2} , b) y^{-2} , c) $(xy)^{-1}$, d) $1/(x^2 + y^2)$.