Integrating Factors

Definition (Exact ODE)

An ODE $M(x, y) d x+N(x, y) d y=0$ is exact iff $\frac{\partial}{\partial y} M=\frac{\partial}{\partial x} N$.

Integrating Factors

Definition (Exact ODE)

An ODE $M(x, y) d x+N(x, y) d y=0$ is exact iff $\frac{\partial}{\partial y} M=\frac{\partial}{\partial x} N$.

Theorem (Integrating Factor)
Consider the ODE Mdx+Ndy=0.
(1) If $\frac{1}{N} \cdot\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=h(x)$, then set $\mu(x)=e^{\int h(x) d x}$.
(2) If $\frac{1}{M} \cdot\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right]=k(y)$, then set $\mu(x)=e^{\int k(y) d y}$.

The ODE $\mu \cdot M d x+\mu \cdot N d y=0$ is exact.

Integrating Factors

Definition (Exact ODE)

An ODE $M(x, y) d x+N(x, y) d y=0$ is exact iff $\frac{\partial}{\partial y} M=\frac{\partial}{\partial x} N$.

Theorem (Integrating Factor)
Consider the ODE Mdx+Ndy=0.
(1) If $\frac{1}{N} \cdot\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=h(x)$, then set $\mu(x)=e^{\int h(x) d x}$.
(2) If $\frac{1}{M} \cdot\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right]=k(y)$, then set $\mu(x)=e^{\int k(y) d y}$.

The ODE $\mu \cdot M d x+\mu \cdot N d y=0$ is exact.

Ex: 1. Solve: $y^{\prime}=\left(x-y^{2}\right) /(2 y)$.

Integrating Factors

Definition (Exact ODE)

An ODE $M(x, y) d x+N(x, y) d y=0$ is exact iff $\frac{\partial}{\partial y} M=\frac{\partial}{\partial x} N$.

Theorem (Integrating Factor)

Consider the ODE $M d x+N d y=0$.
(1) If $\frac{1}{N} \cdot\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=h(x)$, then set $\mu(x)=e^{\int h(x) d x}$.
(2) If $\frac{1}{M} \cdot\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right]=k(y)$, then set $\mu(x)=e^{\int k(y) d y}$.

The ODE $\mu \cdot M d x+\mu \cdot N d y=0$ is exact.

Ex: 1. Solve: $y^{\prime}=\left(x-y^{2}\right) /(2 y)$.
2. The ODE $y^{\prime}=y / x$ has IFs: a) x^{-2}, b) y^{-2}, c) $(x y)^{-1}$, d) $1 /\left(x^{2}+y^{2}\right)$.

