Kepler's Laws

Definition

Planetary motion is planar with the sun in the plane.

Proof.

Set $\vec{r}(t)$ to be the planet's position in space and let $\vec{v}(t)=\vec{r}^{\prime}(t)$ and $\vec{a}(t)=\vec{v}^{\prime}(t)$. Then

$$
\frac{d}{d t}(\vec{r} \times \vec{v}(t))=\vec{v} \times \vec{v}+\vec{r} \times \vec{a}=\vec{r} \times \vec{a}
$$

Newton's law of gravitation gives $\vec{F}=-G M m /\|\vec{r}\|^{2} \cdot(\vec{r} /\|\vec{r}\|)$ and Newton's second law has $\vec{F}=m \vec{a}$, therefore

$$
\vec{a}=-\frac{G M}{\|\vec{r}\|^{3}} \vec{r} ;
$$

i.e., \vec{a} is a scalar multiple of \vec{r} so is parallel to \vec{r}. Whence $\frac{d}{d t}(\vec{r} \times \vec{v})=0$, so $\vec{r} \times \vec{v}$ is a constant.

Kepler's Laws

Theorem (Kepler's First Law)

In a two-body system (sun and planet), the planet's orbit is an ellipse with the sun at a focus.

Proof.

I. Set $r=\|\vec{r}\|$ and $\vec{u}=\vec{r} / r$. Then $\vec{v}=\frac{d}{d t}(r \vec{u}) \& \vec{c}=(r \vec{u}) \times \frac{d}{d t}(r \vec{u})$, so $\vec{c}=r^{2}\left(\vec{u} \times \frac{d}{d t} \vec{u}\right)$.
II. $\vec{a} \times \vec{c}=\left[-\frac{G M}{r^{2}} \vec{u}\right] \times r^{2}\left[\vec{u} \times \frac{d}{d t} \vec{u}\right]=-G M\left[\vec{u} \times\left(\vec{u} \times \frac{d}{d t} \vec{u}\right)\right]=\cdots=\frac{d}{d t}(G M \vec{u})$.

But $\vec{a} \times \vec{c}=\frac{d}{d t}(\vec{v} \times \vec{c})$, thus $\vec{v} \times \vec{c}=G M \vec{u}+\vec{d}$ for some constant \vec{d}.
Now $\vec{u} \cdot \vec{d}=\|\vec{d}\| \cos (\theta)$. Set $c=\|\vec{c}\|$. Then $c^{2}=\vec{c} \cdot \vec{c}=r \vec{u} \cdot(G M \vec{u}+\vec{d})$.
III. Hence, $c^{2}=G M r+r d \cos (\theta)$, therefore $r=\frac{c^{2} / G M}{1+(d /(G M)) \cos (\theta)}$ which implies \vec{r} is an ellipse when the orbit is closed (parabolic or hyperbolic when not closed). After a good deal of algebraic manipulation, we see that the sun lives at a focus. (Egs. of $r=a /(1+b \cos (\theta))$: ellipse, parabola, hyperbola.)

Kepler's Laws

Theorem (Kepler's Second Law)

A planet sweeps through equal areas (wrt the sun) during equal time intervals.

Proof.

We know $A(\theta)=\int_{\theta_{0}}^{\theta} \frac{1}{2} r^{2} d \phi$. Kepler's law becomes $\frac{d}{d t} A=$ constant. Since

$$
\frac{d A}{d t}=\frac{d A}{d \theta} \frac{d \theta}{d t}=\frac{1}{2} r^{2}(\theta) \frac{d \theta}{d t}
$$

Recall $\vec{r}=r \vec{u}$. Then $\vec{u}=\cos (\theta) \mathbf{i}+\sin (\theta) \mathbf{j}$ so that $\frac{d u}{d t}=-\sin (\theta) \frac{d \theta}{d t} \mathbf{i}+\cos (\theta) \frac{d \theta}{d t} \mathbf{j}$. Since $\vec{r} \times \vec{v}$ is constant, $\vec{c}=r^{2}\left(\vec{u} \times \frac{d}{d t} \vec{u}\right)=r^{2} \frac{d \theta}{d t} \mathbf{k}$. Whence $\frac{d A}{d t}=\frac{1}{2}\|c\|$, a constant. Therefore A is linear wrt t; i.e., $\Delta A=k \Delta t$.

Kepler's Laws

Theorem (Kepler's Third Law)

Let T be the time to complete one orbit, and a be the length of the orbit's semimajor axis. Then $T^{2} \propto a^{3}$.

Proof.

The area of the orbital ellipse is

$$
\pi a b=\int_{0}^{T} A^{\prime}(t) d t=\int_{0}^{T} \frac{1}{2} c d t=\frac{1}{2} c T \Longrightarrow T^{2}=4 \pi^{2} \cdot \frac{a^{2} b^{2}}{c^{2}}
$$

where b is the semiminor axis length and c is from the proof of the Second Law. Using the equation of the orbital ellipse (relating a, b, and $c=\|\vec{r} \times \vec{v}\|$) gives

$$
T^{2}=\left[\frac{4 \pi^{2}}{G M}\right] \cdot a^{3}
$$

Kepler's Laws

Timeline

- Aristarchus (c. 300 BC): Earth orbits the Sun.
- Ptolemy (c. 150 AD): Earth is the stationary center of the universe.
- Copernicus gave (1543): orbits are circles, sun is the center, velocity is constant.
- Brahe (1588 \& 1598) published his extensive astronomical data.
- Kepler published the laws (c. 1610-1619, mainly based on Brahe's records of the motion of Mars).
- Galileo (1632) publishes Dialogue Concerning the Two Chief World Systems and sentenced by the Inquisition for heresy (1633)
- Newton (1687) showed his laws of motion and gravitation implied Kepler's laws.

