Limit Superior and Limit Inferior

Definition (Limit Superior)

The limit superior of a sequence is the largest subsequential limit; it is written as $\limsup _{n \rightarrow \infty} a_{n}$ or $\varlimsup_{n \rightarrow \infty} a_{n}$.

Proposition

Let $\left\{a_{n}\right\}$ be a sequence and set $\mathscr{A}=\left\{\right.$ subsequential limits of $\left.a_{n}\right\}$. Then

$$
\limsup _{n \rightarrow \infty} a_{n}=\sup \mathscr{A}=\lim _{n \rightarrow \infty}\left[\sup _{k \geq n} a_{k}\right] .
$$

Proposition

Let $\left\{a_{n}\right\}$ be a bounded sequence in \mathbb{R}, and let $x \in \mathbb{R}$. Then

1. if $x>\limsup _{n \rightarrow \infty} a_{n}$, then $\exists k \in \mathbb{N}$ such that if $n \geq k$, then $a_{n}<x$;
2. if $x<\lim \sup a_{n}$, then $\forall k \in \mathbb{N}$ there is an $\tilde{n} \geq k$ with $a_{\tilde{n}}>x$.

Limit Superior, Limit Inferior, and Limit

Proposition

Let $\left\{a_{n}\right\}$ be a sequence and set

$$
U=\underset{n \rightarrow \infty}{\limsup } a_{n} \quad \text { and } \quad L=\liminf _{n \rightarrow \infty} a_{n} .
$$

Then there exist two (at least) subsequences $\left\{a_{n_{k}}\right\}$ and $\left\{a_{m_{j}}\right\}$ such that $a_{n_{k}} \rightarrow U$ and $a_{m_{j}} \rightarrow L$, respectively.

Proposition

Let $\left\{a_{n}\right\}$ be a sequence and set

$$
U=\limsup _{n \rightarrow \infty} a_{n} \quad \text { and } \quad L=\liminf _{n \rightarrow \infty} a_{n} .
$$

Then either
$U=L$ in which case $\left\{a_{n}\right\}$ must converge (to $A=U=L$), or
$U \neq L$ and then $\left\{a_{n}\right\}$ diverges.

Properties of Limit Superior and Limit Inferior

Proposition

Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{R}. Then

1. $\limsup _{n \rightarrow \infty} a_{n}=\inf _{n \geq 1}\left[\sup _{k \geq n} x_{k}\right]$
2. $\lim _{n \rightarrow \infty} a_{n}=a \Longleftrightarrow \liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n}$
3. $\liminf _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n}$
4. $\limsup \left(a_{n}+b_{n}\right) \leq \limsup a_{n \rightarrow \infty}+\limsup _{n \rightarrow \infty} b_{n}$

$$
{ }_{n \rightarrow \infty} \quad \ln _{n \rightarrow \infty} \quad n \rightarrow \infty
$$

5. let $\limsup a_{n}=S$. Then for any $\varepsilon>0$,

- $a_{n}<S+\varepsilon$ for all but a finite number of n; and
- $a_{n}>S-\varepsilon$ for infinitely many values of n.

Problems

Exercises

Set

$$
\begin{aligned}
& \left\{a_{n}\right\}: 0,1,2,1,0,1,2,1,0,1,2,1,0,1,2,1, \ldots \\
& \left\{b_{n}\right\}: 2,1,1,0,2,1,1,0,2,1,1,0,2,1,1,0, \ldots
\end{aligned}
$$

In Exercises 1. to 5., calculate:

1. $\liminf _{n \rightarrow \infty} a_{n}+\liminf _{n \rightarrow \infty} b_{n}$.
2. $\liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)$.
3. $\liminf _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}$.
4. $\limsup \left(a_{n}+b_{n}\right)$.

$$
n \rightarrow \infty
$$

5. $\limsup a_{n}+\limsup b_{n}$.
6. Compare the values you found in 1. to 5.
