Limit Superior and Limit Inferior

Definition (Limit Superior)

The *limit superior* of a sequence is the largest subsequential limit; it is written as $\limsup_{n\to\infty} a_n$ or $\varlimsup_{n\to\infty} a_n$.

Proposition

Let $\{a_n\}$ be a sequence and set $\mathscr{A} = \{$ subsequential limits of $a_n\}$. Then

 $\limsup_{n\to\infty} a_n = \sup \mathscr{A} = \lim_{n\to\infty} [\sup_{k>n} a_k].$

Proposition

Let $\{a_n\}$ be a bounded sequence in \mathbb{R} , and let $x \in \mathbb{R}$. Then

- 1. *if* $x > \limsup_{n \to \infty} a_n$, then $\exists k \in \mathbb{N}$ such that if $n \ge k$, then $a_n < x$;
- 2. if $x < \limsup_{n \to \infty} a_n$, then $\forall k \in \mathbb{N}$ there is an $\tilde{n} \ge k$ with $a_{\tilde{n}} > x$.

MAT 3220: 1 - 4

Limit Superior, Limit Inferior, and Limit

Proposition

Let $\{a_n\}$ be a sequence and set

 $U = \limsup_{n \to \infty} a_n$ and $L = \liminf_{n \to \infty} a_n$.

Then there exist two (at least) subsequences $\{a_{n_k}\}$ and $\{a_{m_j}\}$ such that $a_{n_k} \rightarrow U$ and $a_{m_j} \rightarrow L$, respectively.

Proposition

Let $\{a_n\}$ be a sequence and set

 $U = \limsup_{n \to \infty} a_n$ and $L = \liminf_{n \to \infty} a_n$.

Then either

U = L in which case $\{a_n\}$ must converge (to A = U = L), or $U \neq L$ and then $\{a_n\}$ diverges.

Properties of Limit Superior and Limit Inferior

Proposition

Let $\{a_n\}$ be a sequence in \mathbb{R} . Then

- 1. $\limsup_{n \to \infty} a_n = \inf_{n \ge 1} [\sup_{k \ge n} x_k]$
- 2. $\lim_{n \to \infty} a_n = a \iff \liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n$
- 3. $\liminf_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n$
- 4. $\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$
- 5. *let* $\limsup a_n = S$. *Then for any* $\varepsilon > 0$ *,*
 - $a_n < S + \varepsilon$ for all but a finite number of n; and
 - $a_n > S \varepsilon$ for infinitely many values of n.

MAT 3220: 3 - 4

Problems

Exercises

Set

 ${a_n}: 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, \dots$ ${b_n}: 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, \dots$

In Exercises 1. to 5., calculate:

- 1. $\liminf_{n\to\infty} a_n + \liminf_{n\to\infty} b_n$.
- 2. $\liminf_{n\to\infty}(a_n+b_n).$
- 3. $\liminf_{n\to\infty} a_n + \limsup_{n\to\infty} b_n.$
- 4. $\limsup_{n\to\infty} (a_n+b_n).$
- 5. $\limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n.$

6. Compare the values you found in 1. to 5.