Constructing a Nonmeasurable Set

Let $X=[0,1$); define the operation $\oplus: X \rightarrow X$ by addition modulo 1 . (Note: X is then equivalent to the unit circle via $t \mapsto e^{i t}$.) Let $A \oplus x=\{a \oplus x \mid a \in A\}$.
Define the relation \sim by
$x \sim y$ if and only if there is a rational number r such that $|x-y|=r$

Exercises.

1. Show that for each rational r, we have $r \sim 0$, and so all rationals are equivalent under \sim.
2. Prove that \sim is an equivalence relation on X.
3. Find $[0]$.

Consider $x_{1}=\pi / 10$ and $x_{2}=\pi / 30$. Since $x_{1}-x_{2}=\pi / 15 \notin \mathbb{Q}$, then $\left[x_{1}\right] \neq\left[x_{2}\right]$. Now consider $x_{3}=$ $(\pi+5) / 10$. Since $x_{1}-x_{3}=1 / 2 \in \mathbb{Q}$, we have that $\left[x_{1}\right]=\left[x_{3}\right]$.
Since \sim is an equivalence relation, it partitions X. Choose a representative h from each equivalence class in the partition of X. (Axiom of Choice!) Gather these elements to form the set H. Consider the collection of these sets $\mathcal{H}=\{H \oplus r\}$ where r ranges over the rationals in X.

Exercises.

4. Determine whether H is countable or uncountable.
5. Verify that \mathcal{H} is a pairwise-disjoint family; i.e., $\left(H \oplus r_{1}\right) \cap\left(H \oplus r_{2}\right)=\emptyset$ for $r_{1} \neq r 2$.
6. Prove that $X=\bigcup_{r \in \mathbb{Q} \cap X}(H+r)$.

Since Lebesgue measure is translation invariant, $\mu(H \oplus r)=\mu(H)$ for all $r \in \mathbb{Q} \cap X$. Assume that H is Lebesgue measurable with $\mu(H)=\lambda$. Then, since \mathcal{H} is a countable family of disjoint sets,

$$
1=\mu(X)=\mu\left(\bigcup_{r \in \mathbb{Q} \cap X}(H+r)\right)=\sum_{r \in \mathbb{Q} \cap X} \lambda
$$

We have a contradiction: If $\lambda=0$, then $1=0$. Otherwise, if $\lambda>0$, then $1=\infty$. Thus H cannot be Lebesgue measurable.

This construction is due to Giuseppe Vitali from his Sul problema della misura dei gruppi di punti di una retta, Tip. Gamberini e Parmeggiani, Bologna, IT, 1905.
(See also Vitali covering.)

