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DIFFERENTIAL CALCULUS OF SCALAR AND
VECTOR FIELDS

8.1 Functions from R” to R”. Scalar and vector fields

Part 1 of this volume dealt primarily with linear transformations

T:V+W

from one linear space V into another linear space W. In Part 2 we drop the requirement
that T be linear but restrict the spaces V and W to be finite-dimensional. Specifically, we
shall consider functions with domain in n-space R”  and with range in m-space R”.

When both n and m are equal to 1, such a function is called a real-valued function of a
real variable. When it = 1 and m > 1 it is called a vector-valued function of a real variable.
Examples of such functions were studied extensively in Volume I.

In this chapter we assume that n > 1 and m 2 1 . When m = 1 the function is called a
real-valued function of a vector variable or, more briefly, a scalar$eld.  When m > 1 it is
called a vector-valued function of a vector variable, or simply a vectorJeld.

This chapter extends the concepts of limit, continuity, and derivative to scalar and
vector fields. Chapters 10 and 11 extend the concept of the integral.

Notation: Scalars will be denoted by light-faced type, and vectors by bold-faced type.
If f is a scalar field defined at a point x = (x1,  . . . , XJ in R”,  the notations f(x) and
“f(x1,. . * 3 x,) are both used to denote the value offat that particular point. Iffis a vector
field we write f(x) or f(xl, . . . , x,) for the function value at x. We shall use the inner
product

n
x-y =xxry,

k=l

and the corresponding norm \lxll = (x * x)‘h,  where x =  (x1,  .  .  .  ) XJ and y =

e;“, )
. , y,). Points in R2  are usually denoted by (x, JJ)  instead of (x1,  x,); points in R3

X, , z ins t e a d o f ( x  x  x )
Scalar and vector field!s’d&~d on subsets of R2  and R3  occur frequently in the appli-

cations of mathematics to science and engineering. For example, if at each point x of the
atmosphere we assign a real numberf(x)  which represents the temperature at x, the function
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244 DifSerential calculus of scalar and vectorjelds

f so defined is a scalar field. If we assign a vector which represents the wind velocity at
that point, we obtain an example of a vector field.

In physical problems dealing with either scalar or vector fields it is important to know
how the field changes as we move from one point to another. In the one-dimensional case
the derivative is the mathematical tool used to study such changes. Derivative theory in
the one-dimensional case deals with functions defined on open intervals. To extend the
theory to R” we consider generalizations of open intervals called open sets.

8.2 Open balls and open sets

Let a be a given point in R” and let r be a given positive number. The set of all points x
in R” such that

lb - all < r

is called an open n-ball of radius r and center a. We denote this set by B(a) or by B(a; r).
The ball B(a; r) consists of all points whose distance from a is less than r. In R1 this is

simply an open interval with center at a. In R2 it is a circular disk, and in R3 it is a spherical
solid with center at II and radius r.

DEFINITION OF AN INTERIOR POINT. Let S be a subset of R”,  and assume that a E S . Then
a is called an interior point of S if there is an open n-ball with center at a, all of whose points
belong to S.

In other words, every interior point a of S can be surrounded by an n-ball B(a) such that
B(a)  G S. The set of all interior points of S is called the interior of S and is denoted by
int S. An open set containing a point a is sometimes called a neighborhood of a.

DEFINITION OF AN OPEN SET. A set S in R” is called open ifall  its points are interior points.
In other words, S is open if and only if S = int S.

EXAMPLES. In R1 the simplest type of open set is an open interval. The union of two or
more open intervals is also open. A closed interval [a, b] is not an open set because neither
endpoint of the interval can be enclosed in a l-ball lying within the given interval.

The 2-ball S = B(O;  1) shown in Figure 8.1 is an example of an open set in R2.  Every
point a of S is the center of a disk lying entirely in S. For some points the radius of this
disk is very small.

Some open sets in R2 can be constructed by taking the Cartesian product of open sets in
R1.  If Al and A, are subsets of R1,  their Cartesian product A, x A, is the set in R2 defined
bY

A ,  x A2=  {(al,a2)ja,EAl  and a,EA,}.

An example is shown in Figure 8.2. The sets A, and A2  are intervals, and A, x A2 is a
rectangle.

1 f A, and A, are open subsets of R’, then AI x A, will be an open subset of R2. To prove
this, choose any point a = (a,, a2) in A, x A,. We must show that a is an interior point
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Circular disk

FIGURE 8.1 The disk B(0; 1) is an open
set in R2.

FIGURE 8.2 The Cartesian product of two
open intervals is an open rectangle.

of A, x A,. Since Ai and A2 are open in R1  there is a l-ball B(a,;  rl) in A1 and a l-ball
B(a,  ; rJ in A,. Let r = min {rl, r2}. We can easily show that the 2-ball  B(a;  r) c
A1 x A,. In fact, if x = (x1,  x2)  is any point of B(a;  r) then 1(x - u/J  < r, so Ix1 - a,!  < rl
and lx, - a,]  < r2. Hence x1 E B(a,  ; rl) and x2 E B(a,  ; r2). Therefore x1 E A, and
x2  ~A29 so (x,,x,)~A,  x A,. This proves that every point of B(a;  r) is in A, x A*.
Therefore every point of A, x A? is an interior point, so A, x A2  is open.

The reader should realize that an open subset of R1  is no longer an open set when it is
considered as a subset of R2,  because a subset of R’  cannot contain a 2-ball.

DEFINITIONS OF EXTERIOR AND BOUNDARY. A point x is said  to be exterior to a set S in
R”  ifthere  is an n-b&l  B(x) containing no points of S. The set of allpoints  in R”  exterior to S
is culled the exterior of 5’ and is denoted by ext S. A point which is neither exterior to S nor an
interior point of S is called a boundary point of S. The set qf  ail boundary points of S is called
the boundary of S and is denoted by 8s.

These concepts are illustrated in Figure 8.1. The exterior of S is the set of all x with
llxjl  > 1.  The boundary of S consists of all x with l/xl/  = 1.

8.3 Exercises

1. Letf be a scalar field defined on a set S and let c be a given real number. The set of all points
x in S such thatf(x)  = c is called a level set  off. (Geometric and physical problems dealing
with level sets will be discussed later in this chapter.) For each of the following scalar fields.
S is the whole space Rfl. Make a sketch to describe the level sets corresponding to the given
values of c.
G-4 .f(x, y)  = x2 + y2, c =o,  1,4,9.
(b) .f(x,  y) = eZy, c = ee2 , e-l, 1,  c, e2,  e3.
(4 f(x, y) = cm (x I- y) 9 c = -1,0,&g& 1.
(d),f(x,y,z)  =x +y  +z, c = -l,O, 1.
(e) ,f(x,  y, z) = x2 + 2y2  + 3z2, c =0,6,12.
(f) ,f(x, y,  z) = sin (x”  + -y2 + z2), c = -1, -3,  o,+,b,  1.
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2. In each of the following cases, let S be the set of all points (x,y) in the plane satisfying the
given inequalities. Make a sketch showing the set S and explain, by a geometric argument,
whether or not S is open. Indicate the boundary of S on your sketch.
(a) x2 + y2 < 1 . (h) 1 Ix 12and3 <y  <4.
(b) 3x2  + 2y2 < 6. (i) 1 <x <2andy >O.
(c) 1x1 < 1 and lyl < 1. Cj)  x2y.
(d) x 2 0 and y > 0 . 04 x >y.
(e) 1x1 5 1 and lyl I 1. (1) y > x2 and [xl  < 2.
(f) x >Oandy  <O. (m) (x2  +y2 - 1)(4  -x2 -y2)  > 0.
(g)  xy < 1 . (n) (2x -x2 -y2)(x2  +y2 -x) >O.

3. In each of the following, let S be the set of all points (x, y, z) in 3-space  satisfying the given
inequalities and determine whether or not S is open.
(a) z* -x2 -y* - 1 >O.
(b) 1x1  < 1, lyl < 1, and Iz/ < 1.
(c) x + y + z < 1.
(d) 1x1  I 1,  lyl < 1, and Izl < 1.
(e) x+y+z<landx>O,y>O,z>O.
(f) x2 + 4y2 + 4z2  - 2x + 16y  +4Oz + 113 <O.

4. (a) If A is an open set in n-space and if x E A, show that the set A - {x}, obtained by
removing the point x from A, is open.
(b) If A is an open interval on the real line and B is a closed subinterval of A, show that
A - B is open.?
(c) If A and B are open intervals on the real line, show that A u B and A n B are open.
(d) If A is a closed interval on the real line, show that its complement (relative to the whole
real line) is open.

5. Prove the following properties of open sets in Rn:
(a) The empty set 0 is open.
(b) R” is open.
(c) The union of any collection of open sets is open.
(d) The intersection of a finite collection of open sets is open.
(e) Give an example to show that the intersection of an infinite collection of open sets is not
necessarily open.

Closed sets. A set Sin Rn is called closed if its complement Rn - S is open. The next three
exercises discuss properties of closed sets.

6. In each of the following cases, let S be the set of all points (x, y) in R2 satisfying the given
conditions. Make a sketch showing the set Sand give a geometric argument to explain whether
S is open, closed, both open and closed, or neither open nor closed.
(a) x2 +y2 2 0. (g)  1 <x  12,3 <y  14.
(b) x2 +y2 < 0. (h) 1 Ix 12,3  <y  <4.
(c) x2 + y2 5 1 . (i) y = x2.
(d) 1 < x2 + y2 < 2. Cj)  y 2 x2.
(e) 1 <x2 +y2 12. (k) y 2 x2 and 1x1  < 2.
(f) 1 <x2 +y2 12. (1) y 2 x2 and 1x1  I 2.

7. (a) If A is a closed set in n-space and x is a point not in A, prove that A u {x}  is also closed.
(b) Prove that a closed interval [a, 61  on the real line is a closed set.
(c) If A and B are closed intervals on the real line, show that A u B and A n B are closed.

t If A and B  are sets, the difference A - B  (called the complement of B relative to A) is the set of all
elements of A which are not in B.
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8. Prove the following properties of closed sets in Rn. You may use the results of Exercise 5.
(a) The empty set .a is closed.
(b) Rn is closed.
(c) The intersection of any collection of closed sets is closed.
(d) The union of a finite number of closed sets is closed.
(e) Give an example to show that the union of an infinite collection of closed sets is not
necessarily closed.

9. Let S be a subset of Rn.
(a) Prove that both int S and ext S are open sets.
(b) Prove that Rn  = (int S) u (ext S) U W, a union of disjoint sets, and use this to deduce
that the boundary aS is always a closed set.

10. Given a set S in Rn and a point x with the property that every ball B(xJ contains both interior
points of S and points exterior to S. Prove that x is a boundary point of S. Is the converse
statement true? That is, does every boundary point of S necessarily have this property?

11. Let S be a subset of Rn. Prove that ext S = int(R”  - S) .
12. Prove that a set S in R”  is closed if and only if S = (int S) u W.

8.4 Limits and continuity

The concepts of limit and continuity are easily extended to scalar and vector fields. We
shall formulate the definitions for vector fields; they apply also to scalar fields.

We consider a functionf: S + R” , where S is a subset of R”. If a E  R”  and b E R” we
write

(8.1)

to mean that

limf(x) = b
X-W

(or,f(x)  - b as x + a)

(8.2) ,,xF;+o II f(x)  - bil  = 0.

The limit symbol in equation (8.2) is the usual limit of elementary calculus. In this definition
it is not required thatf be defined at the point a itself.

If we write h = x - a, Equation (8.2) becomes

,,fifno  IIf@ + h)  - bll = 0.

For points in R2  we write (x, y) for x and (a, 6) for u and express the limit relation (8.1) as
follows :

lim f(x, y) = b.
(x,li)+(o,ll)

For points in R3  we put x = (x, y, z) and a = (a, b, c) and write

lim f(x, Y, 2)  = b s
(e,u,d-(o,b,c)

A function f is said to be continuous at a if f is defined at a and if

We say f is continuous on a set S iff is continuous at each point of S.
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Since these definitions are straightforward extensions of those in the one-dimensional
case, it is not surprising to learn that many familiar properties of limits and continuity can
also be extended. For example, the usual theorems concerning limits and continuity of
sums, products, and quotients also hold for scalar fields. For vector fields, quotients are
not defined but we have the following theorem concerning sums, multiplication by scalars,
inner products, and norms.

THEOREM 8.1. If lim f(x) = b and lim g(x) = c, then we also have:
*-+(I sea

(a)  22 If(x)  +  g(x)1 =  b +  c.

(b) lim I..(x)  =  Ib
x-0

for every scalar A.

(c) $iT f(x) - g(x) = b - c .

(4 lim  IIf(4II = llbll.x+a

Proof. We prove only parts (c) and (d); proofs of (a) and (b) are left as exercises for
the reader.

To prove (c) we write

f(x) * g(x) - b - c = [f(x) - b] * [g(x) - cl  + IJ . [g(x) - c]  + c - If(x) - 61.

Now we use the triangle inequality and the Cauchy-Schwarz  inequality to obtain

0 < llf(x) -g(x)  - 6 * CII < IIf  - 41  Ild4 - cll + II4 II&)  - cl/ + II4  IIf  - 611  *

Since IIf - 611 + 0 and Ilg(x) - cl/ + 0 as x + a, this shows that IIf * g(x) - b . cl1 -+
0 as x + a, which proves (c).

Takingf(x)  = g(x) in part (c) we find

from which we obtain (d).

FFa  Il.m)ll”  = 11412  9

EXAMPLE 1. Continuity and components of a vectorjeld. If a vector field f has values in
R”, each function value f(x) has m components and we can write

f(x) = y;c4,  * * * 3 f&N *

The m scalar fields fr , . . . ,f, are called components of the vector fieldf. We shall prove
that f is continuous at a point if, and only if, each componentf,  is continuous at that point.

Let ek  denote the kth unit coordinate vector (all the components of ek  are 0 except the
kth, which is equal to I). Thenf,(x) is given by the dot product
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Therefore, part (c) of Theorem 8.1 shows that each point of continuity offis also a point of
continuity of fk.  Moreover, since we have

repeated application of parts (a) and (b) of Theorem 8.1 shows that a point of continuity
of all m components fl, .  . . , f, is also a point of continuity off.

EXAMPLE 2. Continuity of the identity function. The identity function, f(x) = x, is
continuous everywhere in R”. Therefore its components are also continuous everywhere
in R”.  These are the n scalar fields given by

fi(X) = x1, fJx)  = x2, . . . ,fn(x)  = x,.

EXAMPLE 3. Continuity of linear transformations. Letfi R” + Rm  be a linear transforma-
tion. We will prove that f is continuous at each point a in R”. By linearity we have

f(a + ir)  = f(a)  +f@) -

Therefore, it suffices to prove thatf(B) + 0 as h - 0. Writing h in terms of its components
we have h = h,e, + **.  + h,e,. Using linearity again we find f(h) = h,f(e,) + * * * +
h&e,). This shows that f(h) -+ 0 as h + 0.

EXAMPLE 4. Continuity of polynomials in n variables. A scalar field P defined on R” by a
formula of the form

P(x) =jgO.  . .,r, Ck,.  . +,x:  * * * xk,,
1 ”

is called a polynomial in n variables x1, . . . , x, . A polynomial is continuous everywhere
in R” because it is a finite sum of products of scalar fields continuous everywhere in R”.
For example, a polynomial in two variables x and y, given by

is continuous at every point (x, y) in R2.

ExAMeLE  5. Continuity of rational functions. A scalar field f given by f (x) = P(x)/Q(x) ,
where P and Q are polynomials in the components of x, is called a rational function. A
rational function is continuous at each point where Q(x) # 0.

Further examples of continuous function can be constructed with the help of the next
theorem, which is concerned with continuity of composite functions.



2 5 0 D@erential  calculus of scalar and vectorjelds

THEOREM 8.2. Let f and g be functions such that the composite function f 0 g is dejned  at
a, where

(fo d(x)  = fW>l  *

If g is continuous at a and if f is continuous at g(a), then the composition f 0 g is continuous
at a.

Proof. Let y = f(x) and 6 = g(a). Then we have

fM41 -fM41  =fW  -f(b).

By hypothesis, y +basx-ta,sowehave

,,x!~:_oIlfk(~))l  -fk(a>lII  ,liy ollf(y) -f(b)ll = 0.

Therefore tin f[g(x)]  = f[g(a)] , so f 0 g is continuous at a.

EXAMPLE 6. The foregoing theorem implies continuity of scalar fields h, where h(x, y) is
given by formulas such as

X+2/
sin (x”y), log (2 + y”>, x - -

X+Y’
log [cos (x” + y2)].

These examples are continuous at all points at which the functions are defined. The first is
continuous at all points in the plane, and the second at all points except the origin. The
third is continuous at all points (x, y) at which x + y # 0, and the fourth at all points at
which x2 + y2 is not an odd multiple of n/2. [The set of (x, y) such that x2 + y2 = m-/2,
n = 1)  3, 5, . . . , is a family of circles centered at the origin.] These examples show that
the discontinuities of a function of two variables may consist of isolated points, entire
curves, or families of curves.

EXAMPLE 7. A function of two variables may be continuous in each variable separately
and yet be discontinuous as a function of the two variables together.
the following example:

This is illustrated by

fb, Y> = e2 if  (x, Y)  Z (0, 01,  f(0, 0) =  0 .

For points (x, y) on the x-axis we have y = 0 andf(x, y) = f(i, 0) = 0, so the function
has the constant value 0 everywhere on the x-axis. Therefore, if we put y = 0 and think of
f as a function of x alone,fis continuous at x = 0. Similarly,fhas the constant value 0
at all points on the y-axis, so if we put x = 0 and think off as a function of y alone, f is
continuous at JJ = 0. However, as a function of two variables,fis not continuous at the
origin. In fact, at each point of the line y = x (except at the origin) the function has the
constant value 4 because f(x, x) = x*/(2x2) = 4 ; since there are points on this line
arbitrarily close to the origin and since f (0,O) # 4, the function is not continuous at (0, 0).
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The exercises in this section are concerned with limits and continuity of scalar fields defined on
subsets of the plane.

1. In each of the following examples a scalar fieldfis defined by the given equation for all points
(x, y) in the plane for which the expression on the right is defined. In each example determine
the set of points (x, y) at whichfis continuous.

(a) f(x,  y) = x4 + y4 - 4x2y2. (f) f(x,  y) = arcsin X .
Jx”  + y2

(b) f(x,  y) = log (x2  + y2). x +Y(g) f(x,  y) = arctan  -
1 -xy’

(h) f(x,  y) = -A.
Jx”  + y2

(i) f(x,  y) = x(“‘).

(e) f(x,  y) = arctan  :. (j) f(x,  y) = arccos Jx/y  .

2. If lim f(x,  y) = L, and if the one-dimensional limits
(r,yl+h,bJ

lim f<x,  y) a n d limfh, y>
z+a v-b

both exist, prove that

lim [limf(x,  y)] = lim [limf(x,y)]  = L.
z+a ll+b 2/+b  ~+a

The two limits in this equation are called iterated limits; the exercise shows that the existence of
the two-dimensional limit and of the two one-dimensional limits implies the existence and equality
of the two iterated limits. (Th e converse is not always true. A counter example is given in
Exercise 4.)

3. Letf(x,  y) = (x - y)/(x  + y) if x + y Z 0. Show that

lim [limf(x,  y)] = 1
e - o  u-0

but that lim [limJ’(x,  y)] = -1.
u - o  x-.0

Use this result with Exercise 2 to deduce thatf(x,  y) does not tend to a limit as (x, y) -+ (0, 0).
4. Let

Show that

j-(X, y) = xzy”
x”y” + (x - y)2

whenever X'J? + (x - Y)~  # 0.

lim [limf(x,  y)] = lim [limf(x,  y)] = 0
x-0  v-0 1/r+o s+o

but thatf(x,  y) does not tend to a limit as (x, y) + (0,O).  [Hint: Examinefon the line y = x .]
This example shows that the converse of Exercise 2 is not always true.
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5.

6.

Let

l

1
x sin -

f<x,  y> = y
i f  y#O,

0 i f  y=O.

Show thatf(x,  y) + 0 as (x, y) + (0,O)  but that

lim [limf(x,  u)l  # lim [limf(x,  u)] .
u-0  x40 x7+0  w-+0

Explain why this does not contradict Exercise 2.
If  (x,  y) + @,O),  letfk  y) = (x2 - v2)/(x2 + v2).  Find the limit off(x,  v) as (x, y) + (0,O)
along the line y = mx. Is it possible to definef(0,  0) so as to makefcontinuous at (0, O)?
Letf(x,  y) = 0 ify < 0 or ify > x2 and letf(x,  y) = 1 if 0 < y < x2. Show thatf(x,  y) - 0
as (X,JJ)  + (0,O)  along any straight line through the origin. Find a curve through the origin
along which (except at the origin)f(x,  JJ)  has the constant-value 1. Isfcontinuous at the origin?
If f(x,  y) = [sin (x2  + v2)]/(x2 + u2)  when (x, u) # (0,O)  how must f(0,  0) be defined so as
to makefcontinuous at the origin?
Letfbe a scalar field continuous at an interior point a of a set S in R”. Iff(a)  # 0, prove that
there is an n-ball B(a) in whichfhas the same sign asf(a).

8.6 The derivative of a scalar field with respect to a vector

This section introduces derivatives of scalar fields. Derivatives of vector fields are dis-
cussed in Section 8.18.

Let f be a scalar field defined on a set S in R”, and let a be an interior point of S. We
wish to study how the field changes as we move from a to a nearby point. For example,
supposef(a) is the temperature at a point a in a heated room with an open window. If we
move toward the window the temperature will decrease, but if we move toward the heater
it will increase. In general, the manner in which a field changes will depend on the direction
in which we move away from I(.

Suppose we specify this direction by another vector y. That is, suppose we move from a
toward another point a + y along the line segment joining a and a + y . Each point on this
segment has the form a + hy, where h is a real number. An example is shown in Figure
8.3. The distance from a to a + hy is llhyll = lhl llyll .

Since a is an interior point of S, there is an n-ball B(a;  r) lying entirely in S. If h is chosen
so that Ihl llyll < r , the segment from a to a + hy will lie in S. (See Figure 8.4.) We keep

’ B(a;r)

FIGURE 8.3 The point a + hv lies on the line FIGURE 8.4 The point a + hy lies in the
through a parallel to JJ. n-ball B(a; r) if jlhyjl < r.
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h # 0 but small enough to guarantee that a + hy E S and we form the difference quotient

(8.3)
f@ + b) -f(a)

h ’

The numerator of this quotient tells us how much the function changes when we move
from a to a + hy . The quotient itself is called the average rate of change off over the line
segment joining a to a + hy . We are interested in the behavior of this quotient as h + 0.
This leads us to the following definition.

DEFINITION OF THE DERIVATIVE OF A SCALAR FIELD WITH RESPECT TO A VECTOR. Given a
scaIar$eldf:  S + R , where S c R”  . Let a be an interior point of S and let y be an arbitrary
point in R”. The derivative off at a with respect toy is denoted by the symbolf  ‘(a; y) and is
dejned  by the equation

(8.4)
fr(a; y) = limf(a + W -.I-(4

h-t0 h

when the limit on the right exists.

EXAMPLE 1. If y = 0, the difference quotient (8.3) is 0 for every h # 0, so f’(u; 0)
always exists and equals 0.

EXAMPLE 2. Derivative of a linear transformation. Iff: S + R is linear, then f (a + hy) =
f(a) + hf(y) and the difference quotient (8.3) is equal tof(y) for every h # 0. In this case,
f’(a; y) always exists and is given by

f’@;  Y> =f(y)

for every a in S and every y in R”. In other words, the derivative of a linear transformation
with respect to y is equal to the value of the function at y.

TO study how f behaves on the line passing through a and  a + y for  y # 0 we introduce
the function

g(t) = f(a + 09.

The next theorem relates the derivatives g’(t) and f '(a + ty; y).

T H E O R E M 8.3. Let g(t) =f(a  + ty). If one of the derivatives g’(t) or f ‘(a + ty; y)
exists then the other also exists and the two are equal,

(8.5) g’(t)  =f’(a + ty; y>.

In particular, when t = 0 we have g’(O)  = f ‘(a; y) .
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Proof. Forming the difference quotient for g, we have

At  + h) - g(t) = f(a + tY + hY> - f@ + ty>
h h

Letting h + 0 we obtain (8.5).

EXAMPLE 3. Compute f '(a; y) if f (x) = 11.x  /I 2 for all x in R”.

Solution. We let g(t)=f(a+tY)=(a+tY).(a+tY)=a.a+2taeY+t2YaY.
Therefore g’(t) = 2u  . y + 2ty . y , so g’(0) = f ‘(a; Y) = 2~ . y .

A simple corollary of Theorem 8.3 is the mean-value theorem for scalar fields.

THEOREM 8.4. MEAN-VALUE THEOREM FOR DERIVATIVES OF SCALAR FIELDS. Assume the
derivativef’(u  + ty; y) exists for each t in the interval 0 5 t < 1. Then for some real 19 in
the open interval 0 < 0 < 1 we have

flu + Y) -f(a) =f’(z;y), where z=u+By.

Proof. Let g(t) = f (a + ty) . Applying the one-dimensional mean-value theorem to g
on the interval [0, l] we have

g(l) - g(O)  = g’(W 3 where 0 < 6’  < 1.

Since g(l) - g(0) = f(u  + y) -f(u) and g’(0) = f ‘(a + 19y;  y), this completes the proof.

8.7 Directional derivatives and partial derivatives

In the special case when y is a unit vector, that is, when 11 yll = 1 , the distance between a
and a + hy is Ihl.  In this case the difference quotient (8.3) represents the average rate of
change offper  unit distance along the segment joining u to a + hy ; the derivative f ‘(a; y)
is called a directional derivative.

DEFINITION OF DIRECTIONAL AND PARTIAL DERIVATIVES. If y is a unit vector, the derivative
f ‘(a; y) is called the directional derivative off at a in the direction of y. In particular, if
y = ek (the kth unit coordinate vector) the directional derivative f ‘(a; e,J  is called the partial
derivative with respect to ek and is also denoted by the symbol Dkf (a). Thus,

&f (4 = f ‘(a ; ek)  .

The following notations are also used for the partial derivative Dkf  (a):

Dkf(al,  . . . , a,), and f&(a,,  . . . , a,).
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Sometimes the derivative fLk is written without the prime as f,, or even more simply
ash.

In R2  the unit coordinate vectors are denoted by i and j. If a = (a, b) the partial derivatives
f ‘(a; i) and f ‘(a; j) are also written as

E (a,  b) and ; (0, b),

respectively. In R3,  if a = (u, b, c) the partial derivatives D&u), D&(u), and Df(u) are
also denoted by

E (a, b, c> > ; (a, b, 4, and z (a,  b, 4.

8.8 Partial, derivatives of higher order

Partial differentiation produces new scalar fields DJ, . . . , DJfrom a given scalar field
J The partial derivatives of DJ, . . . , Dnf  are called second-order partial derivatives off.
For functions of two variables there are four second-order partial derivatives, which are
written as follows:

a”fDd4f) = -axay'
atf

D,(D,f  ) = ax 3
atf

Y
D,(W) = j--y.

Note that D1(D2f)  means the partial derivative of D,f  with respect to the first variable.
We sometimes use the notation Di,jf  for the second-order partial derivative Di(Djf).  For
example, D,,,f  = D,(D,f).  In the &notation we indicate the order of derivatives by
writing

a2f a af
zFy=&iy( 1

This may or may not be equal to the other mixed partial derivative,

a”f a af
ayax  = G Z *( 1

In Section 8.23 we shall prove that the two mixed partials D,(D2f)  and D,(D,f)  are equal
at a point if one of them is continuous in a neighborhood of the point. Section 8.23 also
contains an example in which D1(D2f)  # D2(DIf)  at a point.

8.9 Exercises

1. A scalar field f is defined on Rn  by the equationf(x) = a . x, where a is a constant vector.
Computef’(x; y) for arbitrary x and y.
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2. (a) Solve Exercise 1 whenf(x) = ll~11~.
(b) Take n = 2 in (a) and find all points (x, y) for whichf’(2i + 3j; xi + yj)  = 6.
(c) Taken = 3 in (a) and find all points (x, y, z) for whichf’(i + 2j + 3k; xi + yj + zk) = 0.

3. Let T: Rn + Rn be a given linear transformation. Compute the derivativef’(x; y) for the
scalar field defined on Rn by the equationf(x) = x . T(x).

In each of Exercises 4 through 9, compute all first-order partial derivatives of the given scalar field.
The fields in Exercises 8 and 9 are defined on Rn.

4. f(x, y) = x2 + y2 sin (xy) . 7.&y) =z, x #y.

5. f(X, y) = Jx” + y2. 8. f(x) = a . x , II fixed.

6.f(x,y) = 5,
Jx” + y2

(x, y) # (0,O). 9. f(x) = 2 2 UijXiXi, adj  = aji.
i-1  j=l

In each of Exercises 10 through 17, compute all first-order partial derivatives. In each of Exercises
10, 11, and 12 verify that the mixed partials D,(D,f) and D,(D,f) are equal.

10. f(X, y) = x4 + y4 - 4xzy2. 14. f(x, y) = arctan  (y/x), x #O.

11. f(X, y) = log (x2  + y2), x +Y(x, y) # (0,O).  15. f(x, y) = arctan  -1 -xy’ xy # 1.

12. J-(x, y) = $ cos X2) y #O. 16. f(x, y) = x@J  , x  >o .

13. f<x, y) = tan (x2/y), y #O. 17. f(x, y:) = arccos Jxlv, y #O.

18. Let v(r,  t) = tne--T2/(41). Find a value of the constant n such that v satisfies the following
equation :

19. Given z = u(x,  y)eax+bv  and a2u/( ax ay) = 0. Find values of the constants a and b such that

azz  az az-----++z=().
axay ax ay

20. (a) Assume thatf’(x;  y) = 0 for every x in some n-ball B(a) and for every vector y. Use the
mean-value theorem to prove thatfis constant on B(a).
(b) Suppose that f’(x; JJ) = 0 for a $xed  vector y and for every x in B(a). What can you
conclude about f in this case?

21. A set S in Rn is called convex if for every pair of points a and b in S the line segment from a
to b is also in S;  in other words, ta + (1 - t)b E S for each t in the interval 0 < t < 1 .
(a) Prove that every n-ball is convex.
(b) Iff’(x; JJ) = 0 for every x in an open convex set S and for every y in Rn, prove thatfis
constant on S.

22. (a) Prove that there is no scalar fieldfsuch thatf’(a;  y) > 0 for a fixed vector a and every
nonzero  vector y.
(b) Give an example of a scalar field f such thatf’(x; y) > 0 for a fixed vector y and every
vector x.
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8.10 Directional derivatives and continuity

In the one-dimensional theory, existence of the derivative of a function f at a point
implies continuity at that point. This is easily proved by choosing an h # 0 and writing

f(a+h)-f(a)=f(a+h)--f(a).h.
h

As h + 0 the right side tends to the limit f’(a) * 0 = 0 and hence f(a  + h) --f(a). This
shows that the existence off’(a) implies continuity off at a.

Suppose we apply the same argument to a general scalar field. Assume the derivative
f’(a; y) exists for some y. Then if h # 0 we can write

f(a  + hy) -f(a)  = j(’ + ‘; -f(u).  h.

As h -+  0 the right side tends to the limitf’(u; JJ)  .O  = 0 ; hence the existence off’(u; y)
for a given y implies that

limf(a + hy) = f(a)
h+O

for the same y. This means thatf(x) -f(a as x --f a along a straight line through u having)
the direction y. Iff’(u; y) exists for every vector y, thenf(x) +f(u) as x + a along every
line through a. This seems to suggest thatfis continuous at u. Surprisingly enough, this
conclusion need not be true. The next example describes a scalar field which has a direc-
tional derivative in every direction at 0 but which is not continuous at 0.

EXAMPLE. Letfbe the scalar field defined on R2  as follows:

f(x, Y) = --g-j$ i f  x#O, f(O,  Y> = 0.

Let a = (0,O) and let y = (a, b) be any vector. If a # 0 and h # 0 we have

f@ + hy> -f(u) = .fW  -f(O) = f(ha,  hb) = ab2
h h h a2 + h2b4  *

Letting h + 0 we find f ‘(0; y) = b2/a. If y = (0, b) we find, in a similar way, that
f’(0; y) = 0. Therefore f’(0; y) exists for all directions y. Also, f(x) + 0 as x + 0
along any straight line through the origin. However, at each point of the parabola x = y2
(except at the origin) the functionfhas the value +. Since such points exist arbitrarily close
to the origin and since f (0) = 0, the function f is not continuous at 0.

The foregoing example shows that the existence of all directional derivatives at a point
fails to imply continuity at that point. For this reason, directional derivatives are a some-
what unsatisfactory extension of the one-dimensional concept of derivative. A more suitable
generalization exists which implies continuity and, at the same time, permits us to extend
the principal theorems of one-dimensional derivative theory to the higher dimensional case.
This is called the total derivative.
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8.11 The total derivative

We recall that in the one-dimensional case a function f with a derivative at a can be
approximated near a by a linear Taylor polynomial. Iff ‘(a) exists we let E(a,  h) denote the
difference

(8.6) E(a,  h) = f(a  + h, - f(a) - f’(a)
h

i f  h#O,

and we define E(a,  0) = 0. From (8.6) we obtain the formula

f(a + h) =f(a) + f'(a>h + hE(a,h),

an equation which holds also for h = 0. This is the first-order Taylor formula for approxi-
mating f (a + h) - f(a) by f ‘(a)h. The error committed is hE(a,  h). From (8.6) we see
that E(a, h) --f  0 as h + 0. Therefore the error hE(a,  h) is of smaller order than h for
small h.

This property of approximating a differentiable function by a linear function suggests a
way of extending the concept of differentiability to the higher-dimensional case.

Let f: S + R be a scalar field defined on a set S in R”. Let a be an interior point of S,
and let B(a;  r) be an n-ball lying in S. Let u be a vector with llujl < r, so that
a +  uEB(a;r).

DEFINITION OF A DIFFERENTIABLE SCALAR FIELD. We say that f is dtrerentiable  at a if there
exists a linear transformation

T,:R”+R

from R” to R, and a scalar function E(a,  u) such that

(8.7) f (a + v)  = f (a) + T,(v)  + II 4 -W, 4,

for II  VII  < r , where E(a,  u) + 0 as II  ~11  + 0. The linear transformation T, is called the total
derivative off at a.

Note: The total derivative T, is a linear transformation, not a number. The function
value T,(v) is a real number; it is defined for every point u in Rn. The total derivative was
introduced by W. H. Young in 1908 and by M. Frechet  in 1911 in a more general context.

Equation (8.7), which holds for II  uII < r, is called aflrst-order  Taylorformula forf (a + u).
It gives a linear approximation, T,(u), to the difference f(a + u) -f(u). The error in the
approximation is II  uII E(a, u), a term which is of smaller order than II  uII as 11 VII + 0 ; that is,
W, 4 = o(ll4>  as  Ilull - 0.

The next theorem shows that if the total derivative exists it is unique. It also tells us how
to compute T,(y) for every y in R”.
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THEOREM 8.5. Assume f is differentiable at a with total derivative T,. Then the derivative
f’(a; y) exists for every y in R”  and we have

w3) T,(Y) =.f’(a;y).

Moreover, f ‘(a; y) is a linear combination of the components ofy. Infact,  $y = (yI,  . . . , y,,)  ,
we have

(8.9)

Proof. Equation (8.8) holds trivially if y = 0 since both T,(O) = 0 andf’(a; 0) = 0.
Therefore we can assume that y # 0.

Since f is differentiable at a we have a Taylor formula,

(8.10) f(a  + v)  =f(a) + T,(u)  + II41 E(a, 4

for ((u/l  < r for some r > 0, where E(a,  u) + 0 as Ij~11  -+ 0. In this formula we take
21 = hy, where h # 0 and lhl  llyll < r. Then Ilull <r. Since T, is linear we have
T,(u) =  T,(hy) = hT,,(y)  . Therefore (8.10) gives us

(8.11) f(a + hy) - f(a) = T (y)
h n

+ I h I llvll
-E(a, 0).

h

Since IIuII  -+ 0 as h ---f  0 and since IhJ/h  = f 1, the right-hand member of (8.11) tends to the
limit T,(y) as h --f 0. Therefore the left-hand member tends to the same limit. This proves
(8.8).

Now we use the linearity of T, to deduce (8.9). If y = (yl, . . . , yn)  we have y =
lQ=, ykek,  hence

8.12 The gradient of a scalar field

The formula in Theorem 8.5, which expressesf’(a;  y) as a linear combination of the
components of y, can be written as a dot product,

where Vf (a) is the vector whose components are the partial derivatives off at a,

Vf  (a) = (W(a), . . . 7 o,f(a)) .

This is called the gradient off The gradient Of  is a vector field defined at each point a where
the partial derivatives D,f(a),  . . . , D&a)  exist. We also write grad f for Vf. The symbol
V is pronounced “del.”
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The first-order Taylor ormula (8.10) can now be written in the form

(8.12) f( + 4 =m + VfW  * u + II 4 J% 4 5

where E(a, u) ---f  0 as II  uI[ -+  0. In this form it resembles the one-dimensional Taylor
formula, with the gradie t vector V’(u) playing the role of the derivativef’(u).

From the Taylor form la we can easily prove that differentiability implies continuity.

THEOREM  8.6. iIf a sea rjeldf is difSerentiable  at a, then f is continuous at a.

Proof. From (8.12) we have

If@  + 4 -f@>l  = IV@> * u + 1141  WY 41.

Applying the triangle inequality and the Cauchy-Schwarz  inequality we find

0 I If(a  + 4 - .fWl I IlWa)ll  Ilull + Ilull LW,  41.

This shows thatf(u + u) --f( )u as 11 II2, + 0, so f is continuous at u.

FIGURE 8.5 Geometric relation of the directional derivative to the gradient vector.

When y is a unit vector the directional derivativef’(u;  y) has a simple geometric relation
to the gradient vector. Assume that Of(u)  # 0 and let 0 denote the angle between y and
Vf(u).  Then we have

~‘(u;Y)  = VW  3 = IIVWII  lbll ~0s  e = IIVWII  ~0s  0.

This shows that the directional derivative is simply the component of the gradient vector
in the direction of y. Figure 8.5 shows the vectors Vf(u) and y attached to the point u.
The derivative is largest when cos 8 = 1 , that is, when y has the same direction as Vf(u).
In other words, at a given point a, the scalar field undergoes its maximum rate of change in
the direction of the gradient vector; moreover, this maximum is equal to the length of the
gradient vector. When Vf( )u is orthogonal to y, the directional derivative f’(a;  y) is 0.
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In 2-space the gradient vector is often written as

261

Vfk Y> = -jyVk Y> i + wxt  Y$-
aY  *

In 3-space the corresponding formula is

v-(x,  Y, 4 =
af(x’  ” ‘) i + af(x’  Y, ‘)j + af(x,  y,  ‘) k

.&
aY aZ

8.!3  A sufficient condition for differentiability

Iffis differentiable at a, then all partial derivatives Dj(a),  . . . , D&a) exist. However,
the existence of all these partials does not necessarily imply that f is differentiable at (I.
A counter example is provided by the function

.a Y> = -$$ i f  x#O, f@, Y)  = 0,

discussed in Section 8.10. For this function, both partial derivatives D&O)  and D&O)
exist but f is not continuous at 0, hence f cannot be differentiable at 0.

The next theorem shows that the existence of continuous partial derivatives at a point
implies differentiability at that point.

THEOREM 8.7. A SUFFICIENT CONDITION FOR DIFFERENTIABILITY. Assume that thepartial
derivatives DJ,  . . . , D,,f exist in some n-ball B(a) and are continuous at a. Then f is dif-
ferentiable at a.

Note: A scalar field satisfying the hypothesis of Theorem 8.7 is said to be continuously
diflerentiable  at a.

Proof. The only candidate for T,(V)  is Of (a) * v . We will show that

f (a + 4 - f (4 = Vf (4 * v + II 41 Jm  4 >

where E(a, v) + 0 as 11 VII  -+ 0. This will prove the theorem.
Let il = I(v((  . Then v = iu , where ((u(( = 1. We keep iz small enough so that a + v lies

in the ball B(a) in which the partial derivatives D&  . . . , DJexist. Expressing u in terms
of its components we have

where e,, . . . , e, are the unit coordinate vectors. Now we write the difference f (a + v) -
f(a) as a telescoping sum,

(8.13) f(a  + v) - f(a) = f(u  + 1~)  - f(a) =*&(a  + h) - f(a  + k,)) 9
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where v,, , ul, . . . , o, are any vectors in R”  such that I+,  = 0 and u,, = u. We choose these
vectors so they satisfy the recurrence relation uk = u~...~ + ukek  . That is, we take

u()=  0 , u1  = wl, u2  =  ulel  +  u2e2, . . . , u, = ulel  + . * * + u,e, .

Then the kth term of the sum in (8.13) becomes

f(a + Iu,-,  + h4 - f(a + h-J  = .f(h + J.w,J - f(h) ,

where 6, = a + Au,-, . The two points b, and b, + lu,:e, differ only in their kth component.
Therefore we can apply the mean-value theorem of differential calculus to write

(8.14)

where ck  lies on the line segment joining 6, to 6, + lu,e,. Note that 6, + a and hence
ck+aasA-+O.

Using (8.14) in (8.13) we obtain

But Cf(u) * u = 1 V’(u) . u = /I z;==, D,f(u)u,,  so

f(a + u> -f(a) - V(a) . u = 6 {W-(4  - W-(4}u,  = Ilull  @a, ~1,
h = l

where

Since clc -+ a as 11 u/I + 0, and since each partial derivative Dkf  is continuous at a, we see
that E(u,  u) 4 0 as 11 uII + 0. This completes the proof.

8.14 Exercises
1. Find the gradient vector at each point at which it exists for the scalar fields defined by the

following equations :
(a) f(x, y) = x2 + y2 sin (xy) . (d) f(x, y, z) = x2 - y2 + 2z2.
(b) J-(x, y) = e5  cos ,v . (e) f(x, y, z) = log (x2  + 2y2 - 3~~).
(c) f(X, y, z) = x2y3z4. (0  f(X,.Y, z> = xy”*

2. Evaluate the directional derivatives of the following scalar fields for the points and directions
given :
(a) f(x,  y, z) = x2 + 2y2 + 3z2 at (1, 1,O) in the direction of i -j + 2k.
(b) f(x,  y, z) = (x/y)” at (1, 1, 1) in the direction of 2i + j - k.

3. Find the points (x, y) and the directions for which the directional derivative of f(x,  y) =
3x2  + y2 has its largest value, if (x, y) is restricted to be on the circle x2 + y2 = 1 .

4. A differentiable scalar fieldfhas, at the point (1, 2), directional derivatives +2 in the direction
toward (2,2)  and -2 in the direction toward (1, 1). Determine the gradient vector at (1, 2)
and compute the directional derivative in the direction toward (4, 6).

5. Find values of the constants a, b, and c such that the directional derivative off(x,  y, z) =
axy2 + byz + cz2.? at the point (1,2,  - 1) has a maximum value of 64 in a direction parallel
to the z-axis.
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6. Given a scalar field differentiable at a point a in R2. Su ppose thatf’(a; JJ) = 1 andf’(a; z) = 2,
where y = 2i + 3j and z = i + j. Make a sketch showing the set of all points (x, v) for which
f’(a;  xi + vj) = 6. Also, calculate the gradient V’(a).

7. Let f andg denote scalar fields that are differentiable on an open set S. Derive the following
properties of the gradient:
(a) grad f = 0 iff is constant on S.
(b) grad (f + g) = gradf + gradg .
(c) grad (cf) = c gradfif c is a constant.
(4  grad (fg) = fgradg  + g gradf.

(e) grad f &wav-ftPd~
08 g2

at points at which g # 0.

8. In R3 let r(x,  y, z) = xi + rj + zk, and let r(x,  y, z) = Ilr(x,Y,  z)il  .
(a) Show that Vr(x,  y, z) is a unit vector in the direction of r(x, y, z).
(b) Show that V(P)  = nrnv2r  if n is a positive integer. [Hint: Use Exercise 7(d).]
(c) Is the formula of part (b) valid when n is a negative integer or zero?
(d) Find a scalar field f such that Vf = r .

9. Assume f is differentiable at each point of an n-ball B(a). If f ‘(x; y) = 0 for n independent
vectors y, , . . . , y, and for every x in B(a), prove that f is constant on B(a).

10. Assume f is differentiable at each point of an n-ball B(a).
(a) If Vf (x) = 0 for every x in B(u), prove that f is constant on B(a).
(b) Iff(x) I f(a) for all x in B(u), prove that of(a)  = 0.

11. Consider the following six statements about a scalar field f: S - R, where S c Rn  and u is
an interior point of S.
(a) f is continuous at a.
(b) f is differentiable at a.
(c) f ‘(a; y) exists for every y in Rn.
(d) All the first-order partial derivatives off exist in a neighborhood of a and are continuous
at a.
(e) Of  (a) = 0.
(f) f(x)  = I/x  - alI for all x in R”.

a b c d e f
-----__-

a T
In a table like the one shown here, mark T - - - - - - -

in the appropriate square if the statement in b T
row (x) always implies the statement in - - - - - - -
column (y). For example, if (a) always implies C T
(b), mark T in the second square of the first ----____-

row. The main diagonal has already been d T
filled in for you.

----____-
e T
-----__-

f T

8.15 A chain rule for derivatives of scalar fields

In one-dimensional derivative theory, the chain rule enables us to compute the derivative
of a composite function g(t) =f[r(t)] by the formula

g’(t) = f ‘[r(t)] * r’(t).


