Green's Theorem and Friends

Theorem 1 (Green's Theorem for Simply Connected Domains (1828)). Let C be a positively oriented, piecewise smooth, simple, closed curve and let D be the region enclosed by the curve. If P and Q have continuous partial derivatives on D, then

$$
\oint_{C} P d x+Q d y=\iint_{D}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x d y .
$$

Corollary 2 (Planimeter Corollary). Let C be a positively oriented, piecewise smooth, simple, closed curve and let D be the region enclosed by the curve. Then

$$
\operatorname{Area}(D)=\frac{1}{2} \oint_{C} x d y-y d x
$$

Theorem 3 (Circulation Theorem). Let C be a positively oriented, piecewise smooth, simple, closed curve and let D be the region enclosed by the curve. If the vector field $F=\langle P, Q\rangle$ has continuous partial derivatives on D, then

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{D}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x d y=\iint_{D} \operatorname{curl}(\vec{F}) \cdot \vec{n} d x d y .
$$

Theorem 4 (Stokes' Theorem (1854)). Let S be a simple parametric surface, $S=r(T)$, where $T \subset \mathbb{R}^{2}$ is bounded by a piecewise smooth Jordan curve Γ and r is $1 \rightarrow 1$ with continuous second-order partials. Set $C=r(\Gamma)$ and $F=\langle P, Q, R\rangle$ be continuously differentiable on S.

$$
\oint_{C} P d x+Q d y+R d z=\iint_{S}\left[\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right] d y \wedge d z+\left[\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right] d z \wedge d x+\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x \wedge d y
$$

where $d x \wedge d y=\frac{\partial(x, y)}{\partial(u, v)} d u d v$, etc; or

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{T} \nabla \times \vec{F} \cdot \vec{n} d s
$$

Theorem 5 (Divergence Theorem [Gauss's Theorem (1813)]). Let V be a solid in \mathbb{R}^{3} bounded by an orientable surface S with unit normal \vec{n}. If \vec{F} is continuously differentiable on V, then

$$
\iiint_{V} \operatorname{div}(\vec{F}) d x d y d z=\iint_{R} \vec{F} \cdot \vec{n} d S
$$

or

$$
\oint_{C} \vec{F} \cdot \vec{n} d s=\iint_{D}(\nabla \cdot \vec{F}) d x d y .
$$

Theorem 6 (Green's Theorem for Multiply Connected Domains). Let the Jordan curves C_{o} (outer boundary) and $C_{i_{1}}, \ldots, C_{i_{n}}$ (inner boundaries) define a multiply connected region R on which $\vec{F}=\langle P, Q\rangle$ is continuously differentiable. Then

$$
\iint_{R}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x d y=\oint_{C_{o}} P d x+Q d y-\sum_{k=1}^{n} \oint_{C_{i_{k}}} P d x+Q d y .
$$

