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Green’s Theorem and Friends

Theorem 1 (Green’s Theorem for Simply Connected Domains (1828)). Let C be a positively oriented, piecewise
smooth, simple, closed curve and let D be the region enclosed by the curve. If P and Q have continuous partial

derivatives on D, then
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Corollary 2 (Planimeter Corollary). Let C be a positively oriented, piecewise smooth, simple, closed curve and
let D be the region enclosed by the curve. Then
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Theorem 3 (Circulation Theorem). Let C be a positively oriented, piecewise smooth, simple, closed curve and let
D be the region enclosed by the curve. If the vector field F = (P, Q) has continuous partial derivatives on D, then
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Theorem 4 (Stokes’ Theorem (1854)). Let S be a simple parametric surface, S = r(T), where T C R? is bounded
by a piecewise smooth Jordan curve I and r is 1 — 1 with continuous second-order partials. Set C = r(I') and
F = (P, Q, R) be continuously differentiable on S.
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where dx A dy = dudv, etc; or
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Theorem 5 (Divergence Theorem [Gauss’s Theorem (1813)]). Let V be a solid in R3 bounded by an orientable
surface S with unit normal i. If F is continuously differentiable on V, then
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Theorem 6 (Green’s Theorem for Multiply Connected Domains). Let the Jordan curves C, (outer boundary)
and C;,, ..., C;, (inner boundaries) define a multiply connected region R on which F = (P, Q) is continuously

differentiable. Then
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Ref: “The History of Stokes’ Theorem,” V. Katz, Mathematics Magazine, Vol 52, No 3, May 1979, pp 146-156.



