Flux Integral

1. Find the flux of the field $\mathbf{F}(x, y) = 2x\mathbf{i} - 3y\mathbf{j}$ over the ellipse $C(t) = [\cos(t), 4\sin(t)]$ for $t \in [0, 2\pi]$.

$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \oint_C M \, dy - N \, dx = \oint_C 2x \, dy + 3y \, dx = -4\pi$$

(Net flux is inward.)

A Green Integral

2. Let $\Gamma(t) = [\cos(2\pi t), \sin(2\pi t)]$ on $t \in [0, 1]$. Set $\mathbf{F}(x, y) = -y\mathbf{i} + x\mathbf{j}$

$$\oint_{\Gamma} -y \, dx + x \, dy = \int_0^1 2\pi \big(\sin^2(2\pi t) + \cos^2(2\pi t) \big) dt = 2\pi$$

and

$$\iint_{x^2+y^2 \le 1} 2\,dx\,dy = 2\int_{t=0}^{1}\int_{r=0}^{1}r\,dr\,dt = 2\pi$$

(Circumference of the unit circle is 2π and the area is π .)

Divergence Integral

3. Find the divergence integral of $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ over the unit sphere $S: x^2 + y^2 + z^2 = 1$.

$$\operatorname{div}(\mathbf{F}) = \nabla \cdot \mathbf{F} = 3$$

so

$$\iiint_{S} \operatorname{div}(\mathbf{F}) \, dV = 3 \iiint_{S} dV = 4\pi$$

A Stoke's Integral

4. Let *H* be the positive hemisphere $z = \sqrt{1 - x^2 - y^2}$ for $0 \le x^2 + y^2 \le 1$. Set $\mathbf{F}(x, y) = y\mathbf{i} - x\mathbf{j}$. Then ∂H is the circle $\{x^2 + y^2 = 1, z = 0\}$.

$$\mathbf{F} \cdot d\mathbf{r} = \mathbf{F} \cdot (\mathbf{i} dx + \mathbf{j} dy + \mathbf{k} dz)$$
$$= y dx - x dy$$

So

$$\oint_{\partial H} \mathbf{F} \cdot d\mathbf{r} = \oint_{\partial H} y \, dx - x \, dy = -8\pi$$

Now curl(**F**) = $[P_y - N_z]$ **i** + $[M_z - P_x]$ **j** + $[N_x - M_y]$ **k** = $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix}$ where M = y, N = -x, and P = 0. Hence curl(**F**) = $-2\mathbf{k}$. The unit normal to H is $\mathbf{n} = \frac{1}{2}(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$. Thus curl(**F**) • $\mathbf{n} ds = -z ds$. Whereupon

$$\iint_{H} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} \, ds = \iint_{x^2 + y^2 \le 1} -2 \, dx \, dy = -8\pi$$