Flux Integral

1. Find the flux of the field $\mathbf{F}(x, y)=2 x \mathbf{i}-3 y \mathbf{j}$ over the ellipse $C(t)=[\cos (t), 4 \sin (t)]$ for $t \in[0,2 \pi]$.

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\oint_{C} M d y-N d x=\oint_{C} 2 x d y+3 y d x=-4 \pi
$$

(Net flux is inward.)

A Green Integral

2. Let $\Gamma(t)=[\cos (2 \pi t), \sin (2 \pi t)]$ on $t \in[0,1]$. Set $\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}$

$$
\oint_{\Gamma}-y d x+x d y=\int_{0}^{1} 2 \pi\left(\sin ^{2}(2 \pi t)+\cos ^{2}(2 \pi t)\right) d t=2 \pi
$$

and

$$
\iint_{x^{2}+y^{2} \leq 1} 2 d x d y=2 \int_{t=0}^{1} \int_{r=0}^{1} r d r d t=2 \pi
$$

(Circumference of the unit circle is 2π and the area is π.)

Divergence Integral

3. Find the divergence integral of $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ over the unit sphere $S: x^{2}+y^{2}+z^{2}=1$.

$$
\operatorname{div}(\mathbf{F})=\nabla \cdot \mathbf{F}=3
$$

so

$$
\iiint_{S} \operatorname{div}(\mathbf{F}) d V=3 \iiint_{S} d V=4 \pi
$$

A Stoke's Integral

4. Let H be the positive hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ for $0 \leq x^{2}+y^{2} \leq 1$. Set $\mathbf{F}(x, y)=y \mathbf{i}-x \mathbf{j}$. Then ∂H is the circle $\left\{x^{2}+y^{2}=1, z=0\right\}$.

$$
\begin{aligned}
\mathbf{F} \cdot d \mathbf{r} & =\mathbf{F} \cdot(\mathbf{i} d x+\mathbf{j} d y+\mathbf{k} d z) \\
& =y d x-x d y
\end{aligned}
$$

So

$$
\oint_{\partial H} \mathbf{F} \cdot d \mathbf{r}=\oint_{\partial H} y d x-x d y=-8 \pi
$$

$\operatorname{Now} \operatorname{curl}(\mathbf{F})=\left[P_{y}-N_{z}\right] \mathbf{i}+\left[M_{z}-P_{x}\right] \mathbf{j}+\left[N_{x}-M_{y}\right] \mathbf{k}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{d} & \frac{\partial}{\partial z} \\ M & N & P\end{array}\right|$ where $M=y, N=-x$, and $P=0$.
Hence $\operatorname{curl}(\mathbf{F})=-2 \mathbf{k}$. The unit normal to H is $\mathbf{n}=\frac{1}{2}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})$. Thus $\operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} d s=-z d s$. Whereupon

$$
\iint_{H} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} d s=\iint_{x^{2}+y^{2} \leq 1}-2 d x d y=-8 \pi
$$

