THEOREM OF THE DAY

Green's Theorem Let C be a closed, anticlockwise-oriented curve in the xy-plane enclosing a region D. Let $F(x, y)=(P(x, y), Q(x, y))$ be a 2-valued function having continuous partial derivatives on C and inside D. Then

$$
\int_{C} F d \mathbf{s}=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

$$
P=(x-y)^{2}
$$

Suppose we think of F as a force field acting in the plane. Then the line integral $\int_{C} F d \mathbf{s}$ may be thought of as measuring the total work done by F acting on a particle as it follows the curve C; the integral is often written in the form $\int_{C} P d x+Q d y$, making explicit the action of the x and y components of the force as the particle moves through a small increment in the x and y directions. We refer to this work done by F as the 'circulation of F around C '. Green's Theorem asserts that circulation around C is the accumulation of 'microscopic circulations' around points in D : see the illustration on the left; these microscopic circulations are measured as the component perpendicular to the plane of the curl of F; this component is calculated as: $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$.

$=a+a+\ldots+a$

As an illustration we take $P(x, y)=(x-y)^{2}$ and $Q(x, y)=x+y$. These are plotted as surfaces in 3D on the right, and a half-unit circle, closed by adjoining a segment of the x-axis, is chosen as the curve C. We find $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1+2(x-y)$ and Green's Theorem yields the value of $\int_{C} F d \mathbf{s}$ by double integration as

$$
\iint_{D} 1+2(x-y) d A=\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} 1+2(x-y) d y d x=\int_{-1}^{1}\left(\sqrt{1-x^{2}}+2 x \sqrt{1-x^{2}}-1+x^{2}\right) d x=\left[\frac{1}{2} x \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x-\frac{2}{3}\left(1-x^{2}\right)^{3 / 2}-x+\frac{x^{3}}{3}\right]_{-1}^{1}=\frac{\tau}{4}-\frac{4}{3}
$$

Evaluating the line integral directly requires piecewise parameterisation of the curve C : half-circle $c_{1}(t)=(-\cos t, \sin t), 0 \leq t \leq \tau / 2$ and base $c_{2}(t)=(t, 0),-1 \leq t \leq 1$:

$$
\begin{aligned}
\int_{C} F d \mathbf{s} & =\int_{0}^{\tau / 2} F\left(c_{1}(t)\right) \cdot c_{1}^{\prime}(t) d t+\int_{-1}^{1} F\left(c_{2}(t)\right) \cdot c_{2}^{\prime}(t) d t=\int_{0}^{\tau / 2} F(\cos t, \sin t) \cdot(-\sin t, \cos t) d t+\int_{-1}^{1} F(t, 0) \cdot(1,0) d t \\
& =\int_{0}^{\tau / 2}(\cos t-\sin t)^{2}(-\sin t)+(\cos t+\sin t) \cos t d t+\int_{-1}^{1} t^{2} d t=-2+\frac{\tau}{4}+\frac{2}{3}=\frac{\tau}{4}-\frac{4}{3}, \quad \text { as expected }
\end{aligned}
$$

George Green published this theorem, a powerful generalisation of the Fundamental Theorem of the Calculus, in 1828.
Web link: mathinsight.org/greens_theorem_idea (on which the above description and examples are based).
Further reading: Inside Interesting Integrals by Paul J. Nahin, Springer, 2015, Chapter 8.

