MAT 5620, Analysis II

Wm C Bauldry

BauldryWC@appstate.edu

Spring, 2017

Introduction to Lebesgue Measure

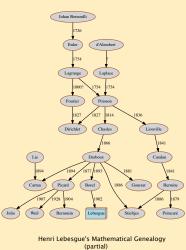
Prelude

There were two problems with calculus: there are functions where

•
$$f(x) \neq \int f'(x) dx$$
 (c.f., G-O #30)

•
$$f(x) \neq \frac{d}{dx} \left[\int f(x) \, dx \right]$$

In his 1902 dissertation, "Intégrale, longueur, aire," Lebesgue wrote, "It thus seems to be natural to search for a definition of the integral which makes integration the inverse operation of differentiation in as large a range as possible."



▶ Mil

What's in a Measure

Goals

THE BEST *measure* would be a real-valued set function μ that satisfies

- \bullet $\mu(I) = \text{length}(I)$ where I is an interval
- **2** μ is translation invariant: $\mu(x+E) = \mu(E)$ for any $x \in \mathbb{R}$
- \bullet if $\{E_n\}$ is pairwise disjoint, then $\mu(\bigcup_n E_n) = \sum_n \mu(E_n)$
- $\mathbf{\Phi} \operatorname{dom}(\mu) = \mathcal{P}(\mathbb{R})$ (the power set of \mathbb{R})

THE BAD NEWS:

$$\left\{ egin{array}{ll} \textit{continuum hypothesis} \\ + \textit{axiom choice} \end{array}
ight\} \implies 1, 3, \text{ and 4 are incompatible}$$

THE PLAN:

- Give up on 4. (cf. Vitali)
- 1. and 2. are nonnegotiable
- Weaken 3.. then reclaim it

Sigma Algebras

Definition

Sigma Algebra of Sets

Algebra: A collection of sets A is an *algebra* iff A is closed under unions

and complements.

 σ -Algebra: An algebra of sets A is a σ -algebra iff A is closed under

countable unions.

Proposition

Let A be a nonempty algebra of sets of reals. Then

- \emptyset and $\mathbb{R} \in \mathcal{A}$. $(A \in \mathcal{A} \implies A^c \in \mathcal{A}$. Then $\mathbb{R} = A \cup A^c \in \mathcal{A}$. Then $\mathbb{R}^c \in \mathcal{A}$.)
- A is closed under intersection. $(A \cap B = [A^c \cup B^c]^c$ DeMorgan)

Let A be a nonempty σ -algebra of sets of reals. Then

• A is closed under countable intersections.

Sigma Samples

Examples

- $\mathbf{0} \ \mathcal{A} = \{\emptyset, \mathbb{R}\}$
- $\mathcal{F} = \{F \subset \mathbb{R} : F \text{ is finite or } F^c \text{ is finite}\}$
 - \bullet \mathcal{F} is an algebra, the co-finite algebra
 - ② \mathcal{F} is not a σ -algebra For each $r \in \mathbb{Q}$, the set $\{r\} \in \mathcal{F}$. But $\bigcup_{r \in \mathbb{Q}} \{r\} = \mathbb{Q} \notin \mathcal{F}$
- **3** Let $\mathcal{A} = \{\emptyset, [-1,1], (-\infty,-1) \cup (1,\infty), \mathbb{R}\}$. Is \mathcal{A} an algebra?
- **1** Any intersection of σ -algebras is a σ -algebra
- **1** Let $\mathcal{B}(\mathbb{R})$ be the smallest σ -algebra containing all the open sets, the *Borel* σ -algebra.

Outer Measure

Definition (Lebesgue Outer Measure)

Let $E \subset \mathbb{R}$. Define the *Lebesgue Outer Measure* μ^* of E to be

$$\mu^*(E) = \inf_{E \subset \bigcup I_n} \sum_n \ell(I_n),$$

the infimum of the sums of the lengths of open interval covers of E.

Proposition (Monotonicity)

If $A \subseteq B$, then $\mu^*(A) \le \mu^*(B)$.

Proposition

If I is an interval, then $\mu^*(I) = \ell(I)$.

Outer Measure of an Interval

Proof.

- I. I is closed and bounded (compact). Then I = [a, b].
 - For any $\varepsilon > 0$, $[a,b] \subset (a-\varepsilon,b+\varepsilon)$. So $\mu^*(I) \leq b-a+2\varepsilon$. Since ε is arbitrary, $\mu^*(I) \leq b-a$.
 - 2 Let $\{I_n\}$ cover [a,b] with open intervals. There is a finite subcover for [a,b]. Order the subcover so that consecutive intervals overlap. Then

$$\sum_{N} \ell(I_k) = (b_1 - a_1) + (b_2 - a_2) + \dots + (b_N - a_N)$$

Rearrange

$$\sum_{N} \ell(I_k) = b_N - (a_N - b_{N-1}) - (a_{N-1} - b_{N-2}) - \dots - (a_2 - b_1) - a_1$$

$$\geq b_N - a_1 > b - a$$

Whence $\mu^*(I) = b - a$.

Outer Measure of an Interval, II

Proof (cont).

II. Let I be any bounded interval and $\varepsilon > 0$.

1 There is a closed interval $J \subset I$ so that $\ell(I) - \varepsilon < \ell(J)$. Then

$$\ell(I) - \varepsilon < \ell(J) = \mu^*(J) \le \mu^*(I) \le \mu^*(\bar{I}) = \ell(\bar{I}) = \ell(I)$$

III. Suppose *I* is infinite.

- **1** Then for each n, there is a closed interval $J \subset I$ s.t. $\ell(J) = n$
- 2 Thence $\mu^*(I) > n$ for all n.

Aha! $\mu^*(I) = \infty$

Proposition

$$\mu^*(\mathbb{Q}) = 0$$

Proof.

Order \mathbb{Q} as $\{r_1, r_2, \dots\}$. The collection $\{I_n = (r_n - \varepsilon/2^n, r_n + \varepsilon/2^n)\}$ covers \mathbb{Q}

Countable Subadditivity

Theorem (μ^* is Countably Subadditive)

Let $\{E_n\}$ be a countable set sequence in \mathbb{R} . Then $\mu^*\left(\bigcup_n E_n\right) \leq \sum_n \mu^*(E_n)$

Proof.

I. If $\mu^*(E_n) = \infty$ for any n, then done.

II. Let $\varepsilon > 0$

- $\bullet \quad \text{For each n find a cover $\{I_{n,j}\}_{n\in\mathbb{N}}$ such that $\sum\limits_{i\in\mathbb{N}}\ell(I_{n,j})<\mu^*(E_n)+\frac{\varepsilon}{2^n}$}$
- 2 Then $\{I_{n,j}\}_{n,j\in\mathbb{N}}$ covers $E=\bigcup_n E_n$.
- Whereupon

$$\mu^*(E) \le \sum_{n,j\in\mathbb{N}} \ell(I_{n,j}) = \sum_{n\in\mathbb{N}} \left[\sum_{j\in\mathbb{N}} \ell(I_{n,j}) \right]$$
$$< \sum_{n\in\mathbb{N}} \left[\mu^*(E_n) + \frac{\varepsilon}{2^n} \right] = \sum_{n\in\mathbb{N}} \left[\mu^*(E_n) \right] + \varepsilon$$

Open Holding & Lebesgue's Measure

Corollary

Given $E \subseteq \mathbb{R}$ and $\varepsilon > 0$, there is an open set $O \supseteq E$ s.t.

$$\mu^*(E) \le \mu^*(O) \le \mu^*(E) + \varepsilon$$

Definition (Carathéodory's Condition)

A set E is Lebesgue measurable iff for every (test) set A,

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Let \mathfrak{M} be the collection of all Lebesgue measurable sets.

Corollary

For any A and E,

$$\mu^*(A) = \mu^*((A \cap E) \cup (A \cap E^c)) \le \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Much Ado About Nothing

Theorem

If $\mu^*(E) = 0$, then $E \in \mathfrak{M}$; i.e., E is measurable.

Proof.

Given the previous corollary, we need only show that

$$\mu^*(A \cap E) + \mu^*(A \cap E^c) \le \mu^*(A)$$

- **1** Since $A \cap E \subset E$, then $\mu^*(A \cap E) \leq \mu^*(E) = 0$.
- ② Since $A \cap E^c \subset A$, then $\mu^*(A \cap E^c) \leq \mu^*(A)$.

Whence
$$\mu^*(A \cap E) + \mu^*(A \cap E^c) \le 0 + \mu^*(A) = \mu^*(A)$$
.

Corollary

$$\mu^*(\mathbb{Q}) = 0 \implies \mathbb{Q} \in \mathfrak{M}$$

Unions Work

Theorem

A finite union of measurable sets is measurable.

Proof.

Let E_1 and $E_2 \in \mathfrak{M}$. Let A be a test set.

Use $A \cap E_1^c$ as a test set for E_2 which is measurable. Thence

$$\mu^*(A \cap E_1^c) = \mu^*((A \cap E_1^c) \cap E_2) + \mu^*((A \cap E_1^c) \cap E_2^c)$$

Note $A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2 \cap E_1^c)$. Whereupon $\mu^*(A \cap (E_1 \cup E_2)) + \mu^*(A \cap (E_1 \cup E_2)^c)$ $= \mu^*(A \cap (E_1 \cup E_2)) + \mu^*(A \cap (E_1^c \cap E_2^c))$ $\leq \left[\mu^*(A \cap E_1) + \mu^*(A \cap E_2 \cap E_1^c)\right] + \mu^*(A \cap E_1^c \cap E_2^c)$ $\leq \mu^*(A \cap E_1) + \left[\mu^*(A \cap E_1^c \cap E_2) + \mu^*(A \cap E_1^c \cap E_2^c)\right]$ $= \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c)$ $=\mu^*(A)$

Countable Unions Work

Theorem

The countable union of measurable sets is measurable.

Proof.

Let $E_k \in \mathfrak{M}$ and $E = \bigcup_n E_n$. Choose a test set A.

We need to show $\mu^*(A \cap E) + \mu^*(A \cap E^c) \le \mu^*(A)$.

- Set $F_n = \bigcup^n E_k$ and $F = \bigcup^\infty E_k = E$. Define $G_1 = E_1$, $G_2 = E_2 E_1$, ..., $G_k = E_k \bigcup^{k-1} E_j$, and $G = \bigcup_n G_k$. Then
 - (i) $G_i \cap G_j = \emptyset$, $(i \neq j)$ (ii) $F_n = \bigcup G_k$ (iii) F = G = E
- 2 Test F_n with A to obtain $\mu^*(A) = \mu^*(A \cap F_n) + \mu^*(A \cap F_n^c)$
- **3** Test G_n with $A \cap F_n$ to obtain

$$\mu^*(A \cap F_n) = \mu^*((A \cap F_n) \cap G_n) + \mu^*((A \cap F_n) \cap G_n^c)$$

= $\mu^*(A \cap G_n) + \mu^*(A \cap F_{n-1})$

Countable Unions Work, II

Proof.

1 Iterate $\mu^*(A \cap F_n) = \mu^*(A \cap G_n) + \mu^*(A \cap F_{n-1})$ from 3 to have

$$\mu^*(A \cap F_n) = \sum_{k=1}^n \mu^*(A \cap G_k)$$

5 Since $F_n \subseteq F$, then $F^c \subseteq F_n^c$ for all n, then

$$\mu^*(A \cap F_n^c) \ge \mu^*(A \cap F^c)$$

Whence

$$\mu^*(A) \ge \sum_{k=1}^n \mu^*(A \cap G_k) + \mu^*(A \cap F^c)$$

The summation is increasing & bounded, so convergent.

Mowever

$$\sum_{k=1}^{\infty} \mu^*(A \cap G_k) \ge \mu^* \left(\bigcup_{k=1}^{\infty} (A \cap G_k) \right) = \mu^*(A \cap F)$$

Aha!
$$\mu^*(A) \ge \mu^*(A \cap F) + \mu^*(A \cap F^c)$$

Everything Works

Corollary

The collection of Lebesgue measurable sets $\mathfrak M$ is a σ -algebra.

Corollary

The Borel sets are measurable. (There are measurable, non-Borel sets.)

$$\mathcal{B}(\mathbb{R}) \subsetneqq \mathfrak{M} \subsetneqq \mathcal{P}(\mathbb{R})$$

Definition (Lebesgue Measure)

Lebesgue measure μ is μ^* restricted to \mathfrak{M} . So $\mu \colon \mathfrak{M} \to [0, \infty]$.

Definition (Almost Everywhere)

A property P holds almost everywhere (a.e.) iff $\mu(\{x: \neg P(x)\}) = 0$.

The Return of Additivity

Theorem

Let $\{E_n\}$ be a countable (finite or infinite) sequence of pairwise disjoint sets in \mathfrak{M} .

Then

$$\mu\bigg(\bigcup_{k=1}^{\infty} E_k\bigg) = \sum_{k=1}^{\infty} \mu(E_k)$$

Proof.

- I. n is finite.
- - $(\bigcup_{k=1}^{n} E_k) \cap E_n = E_n \text{ and } (\bigcup_{k=1}^{n} E_k) \cap E_n^c = \bigcup_{k=1}^{n-1} E_k$
 - $=\mu(E_n) + \mu(\bigcup_{k=1}^{n-1} E_k) = \mu(E_n) + \sum_{k=1}^{n-1} \mu(E_k) = \sum_{k=1}^{n} \mu(E_k)$
- II. n is infinite.
 - $\bigcup_{k=1}^{n} E_k \subset \bigcup_{k=1}^{\infty} E_k \implies \mu(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} \mu(E_k) \leq \mu(\bigcup_{k=1}^{\infty} E_k)$
 - **2** A bounded & increasing sum converges. Thus $\sum_{k=1}^{\infty} \mu(E_k) \leq \mu(\bigcup_{k=1}^{\infty} E_k)$
 - Subadditivity finishes the proof.

Adding an Example

Example

Set
$$E_n = \left(\frac{n-1}{n}, \frac{n}{n+1}\right)$$
 for $n = 1..\infty$.

• The E_n are pairwise disjoint.

$$\mu(E_n) = \ell(E_n) = \frac{n}{n+1} - \frac{n-1}{n} = \frac{1}{n(n+1)}$$

Whence
$$\mu\left(\bigcup_{n=1}^{\infty}E_{n}\right)=1.$$

NOTA BENE:
$$\bigcup_{n=1}^{\infty} E_n = (0,1) - \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots \right\}$$
. Hence $\bigcup_{n=1}^{\infty} E_n = (0,1)$ a.e.

Matryoshka

Theorem

If $\{E_n\}$ is a seq of nested, measurable sets with $\mu(E_1) < \infty$, then

$$\mu\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n)$$

Proof.

- Set $E = \bigcap_{k=0}^{\infty} E_k$. Set $F_k = E_k E_{k+1}$. The F_k are pairwise disjoint.
- ② Since $\bigcup_{k=1}^{\infty} F_k = E_1 E$, then $\mu(E_1 E) = \sum_{k=1}^{\infty} \mu(F_k) = \sum_{k=1}^{\infty} \mu(E_k E_{k+1})$.
- If $A \supset B$, then $\mu(A B) = \mu(A) \mu(B)$. Apply to the formula above.

Since $\mu(E_1)$ is finite, we're done.

The Cantor Set

Cantor Sets¹

I. Constructing C

- **1** Set $C_0 = [0, 1]$
- 2 Set $C_1 = C_0 (\frac{1}{3}, \frac{2}{3})$
- **3** Set $C_2 = C_1 (\frac{1}{3^2}, \frac{2}{3^2}) (\frac{7}{3^2}, \frac{8}{3^2})$
- **9** Set $C_3 = C_2 (\frac{1}{3^3}, \frac{2}{3^3}) (\frac{7}{3^3}, \frac{8}{3^3}) (\frac{19}{3^3}, \frac{20}{3^3}) (\frac{25}{3^3}, \frac{26}{3^3})$

II. Properties of C

- C is uncountable
- C is perfect

- C is nowhere dense
- O is compact
- 6 C is totally disconnected
- \bigcirc $(\forall i) \ \partial C_i \subset C$

¹Cantor gave the set in a footnote to show "perfect" $\not\subset$ "everywhere dense".

Not So Strange After All

Theorem

Let $E \subseteq \mathbb{R}$ and let $\varepsilon > 0$. TFAE:

- E is measurable
- **2** There is an open set $O \supset E$ s.t. $\mu^*(O E) < \varepsilon$
- **3** There is a closed set $F \subset E$ s.t. $\mu^*(E F) < \varepsilon$

Proposition

Let S and T be measurable subsets of \mathbb{R} . Then

$$\mu(S \cup T) + \mu(S \cap T) = \mu(S) + \mu(T)$$

Functionally Measurable

Theorem (Measurability Conditions for Functions)

Let $f: D \to \mathbb{R}_{\infty}$ for some $D \in \mathfrak{M}$. TFAE

- For each $r \in \mathbb{R}$, the set $f^{-1}((r,\infty))$ is measurable.
- ② For each $r \in \mathbb{R}$, the set $f^{-1}([r,\infty))$ is measurable.
- **3** For each $r \in \mathbb{R}$, the set $f^{-1}((-\infty, r))$ is measurable.
- For each $r \in \mathbb{R}$, the set $f^{-1}((-\infty, r])$ is measurable.

Proof.

$$1 \Rightarrow 2$$
: $\{x \mid f(x) \ge r\} = \bigcap_{n} \{x \mid f(x) > r - 1/n\}$

$$2 \Rightarrow 3$$
: $\{x \mid f(x) < r\} = D - \{x \mid f(x) \ge r\}$

$$3 \Rightarrow 4$$
: $\{x \mid f(x) < r\} = \bigcap_{x \in \mathbb{R}} \{x \mid f(x) < r + 1/n\}$

$$4 \Rightarrow 1$$
: $\{x \mid f(x) > r\} = D - \{x \mid f(x) \le r\}$

The Measurably Functional

Corollary

If f satisfies any measurability condition, then $\{x \mid f(x) = r\}$ is measurable for each r.

Definition (Measurable Function)

If a function $f:D\to\mathbb{R}_\infty$ has measurable domain D and satisfies any of the measurability conditions, then f is *measurable*.

Definition

Step function: $\phi:[a,b] \to \mathbb{R}_{\infty}$ is a *step function* if there is a partition $a=x_0 < x_1 < \cdots < x_n = b$ s.t. ϕ is constant on each interval $I_k = (x_{k-1}, x_k)$, then

$$\phi(x) = \sum_{k=1}^{n} a_k \chi_{I_k}(x)$$

Simple function: A function ψ with range $\{a_1, a_2, \dots, a_n\}$ where each set $\psi^{-1}(a_k)$ is measurable is a *simple function*.

Simply Stepping

Proposition

Step functions and simple functions are measurable

Theorem (Algebra of Measurable Functions)

Let f and g be measurable on a common domain D, and let $c \in \mathbb{R}$. Then

$$\mathbf{0}$$
 $f+c$

$$\bullet \quad f \cdot g$$

$$2 c \cdot f$$

are all measurable.

Proof.

Sequencing

Theorem

Let $\{f_n\}$ be a sequence of measurable functions on a common domain D. Then

 \bigcirc sup $\{f_1, \ldots, f_n\}$

 \odot sup f_n $n \rightarrow \infty$

 $\limsup f_n$ $n \rightarrow \infty$

 $\{f_1,\ldots,f_n\}$

 $\inf_{n\to\infty} f_n$

 $\lim \inf f_n$

are all measurable.

Proof.

1 Set
$$f = \{f_1, \dots, f_n\}$$
. Then $\{f(x) > r\} = \bigcup_{n=0}^{n} \{f_k(x) > r\}$.

$$\bullet$$
 Set $F = \sup_n f_n$. Then $\{F(x) > r\} = \bigcup_{k=1}^{\infty} \{f_k(x) > r\}$.

3 Set
$$\Phi = \limsup_n f_n$$
. Then $\limsup_{n \to \infty} f_n = \inf_n \left[\sup_{k \ge n} f_k \right]$

Zeroing

Theorem

If f is measurable and f = g a.e., then g is measurable.

Definition (Converence Almost Everywhere)

A sequence $\{f_n\}$ converges to f almost everywhere, written as $f_n \to f$ a.e., iff $\mu\Big(\{x:f_n(x)\not\to f(x)\}\Big)=0.$

Theorem

Let $f:[a,b]\to\mathbb{R}$. Then f is measurable iff there is a seq. of simple functions $\{\psi_n\}$ converging to f a.e.

A Simple Proof

Proof.

 (\Rightarrow) Wolog $f \geq 0$.

① Define
$$A_{n,k}=\left\{x\left|\frac{k-1}{2^n}\leq f(x)<\frac{k}{2^n}\right.\right\}$$
 for $k=1..(n\cdot 2^n)$ and

$$A_{0,n} = [a, b] - \bigcup_{k=1}^{n2^n} A_{n,k}$$

$$\text{Set } \psi_n(x) = n\chi_{A_{0,n}}(x) + \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \cdot \chi_{A_n,k}(x)$$

- Then
 - $\psi_1 < \psi_2 < \cdots$
 - **2** If 0 < f(x) < n, then $|f \psi_n| < 2^{-n}$
 - 3 $\lim_n \psi = f$ a.e.

▶ Maple Example

Integration

We began by looking at two examples of integration problems.

- The Riemann integral over [0, 1] of a function with infinitely many discontinuities didn't exist even though the points of discontinuity formed a set of measure zero.
 - (The points of discontinuity formed a dense set in [0,1].)
- The limit of a sequence of Riemann integrable functions did not equal the integral of the limit function of the sequence. (Each function had area $\frac{1}{2}$, but the limit of the sequence was the zero function.)

We will recall Riemann integration, then Riemann-Stieltjes integration, and last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy, Gauge, Perron, etc. See the list given in the "See also" section of *Integrals* on Mathworld. Burk's A Garden of Integrals is an excellent introduction.

Riemann Integral

Definition

- A partition \mathcal{P} of [a, b] is a finite set of points such that $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b\}.$
- Set $M_i = \sup f(x)$ on $[x_{i-1}, x_i]$. The upper sum² of f on [a, b] w.r.t. \mathcal{P} is

$$U(\mathcal{P}, f) = \sum_{i=1} M_i \cdot \Delta x_i$$

• The upper Riemann integral of f over [a, b] is

$$\int_{a}^{b} f(x) dx = \inf_{\mathcal{P}} U(\mathcal{P}, f)$$

Exercise

① Define the lower sum $L(\mathcal{P}, f)$ and the lower integral $\int_a^b f$.

² Actually, the Upper Riemann-Darboux sum.

Definitely a Riemann Integral

Definition

If $\int_a^b f(x) \, dx = \int_a^b f(x) \, dx$, then f is Riemann integrable and is written as $\int_a^b f(x) \, dx$ and $f \in \Re$ on $[\bar{a}, b]$.

Proposition

A function f is Riemann integrable on [a,b] if and only if for every $\epsilon>0$ there is a partition $\mathcal P$ of [a,b] such that

$$U(\mathcal{P}, f) - L(\mathcal{P}, f) < \epsilon.$$

Theorem

If f is continuous on [a,b], then $f \in \Re$ on [a,b].

Theorem

If f is bounded on [a,b] with only finitely many points of discontinuity, then $f \in \mathfrak{R}$ on [a,b].

Properties of Riemann Integrals

Proposition (Algebra of Riemann Integrals)

Let f and $g \in \Re$ on [a,b] and $c \in \mathbb{R}$. Then

- $\bullet \int_a^b cf dx = c \int_a^b f dx$
- $f \cdot q \in \Re$
- if $f \leq g$, then $\int_a^b f dx \leq \int_a^b g dx$
- $\bullet \left| \int_a^b f \, dx \right| \le \int_a^b |f| \, dx$
- Define $F(x) = \int_a^x f(t) dt$. Then F is continuous and, if f is continuous at x_0 , then $F'(x_0) = f(x_0)$
- If F' = f on [a, b], then $\int_a^b f(x) dx = F(b) F(a)$

Riemann Integrated Exercises

Exercises

- If $\int_a^b |f(x)| dx = 0$, then f = 0.
- **2** Show why $\int_0^1 \chi_{\mathbb{Q}}(x) dx$ does not exist.
- Operation Define

$$S_n(x) = \sum_{k=1}^{n+1} \left(\frac{k-1}{k} \cdot \chi_{\left[\frac{k-1}{k}, \frac{k}{k+1}\right)}(x) \right) + \frac{n}{n+1} \chi_{\left[\frac{n+1}{n+2}, 1\right]}(x).$$

- How many discontinuities does S_n have?
- 2 Prove that $S'_n(x) = 0$ a.e.
- **3** Calculate $\int_0^1 S_n(x) dx$.
- What is $S_{\infty}^{\circ \circ}$?
- **5** Does $\int_0^1 S_{\infty}(x) dx$ exist?

(See an animated graph of S_N .)

Riemann-Stieltjes Integral

Definition

- Let $\alpha(x)$ be a monotonically increasing function on [a,b]. Set $\Delta \alpha_i = \alpha(x_i) \alpha(x_{i-1})$.
- Set $M_i = \sup f(x)$ on $[x_{i-1}, x_i]$. The *upper sum* of f on [a, b] w.r.t. α and $\mathcal P$ is

$$U(\mathcal{P}, f, \alpha) = \sum_{i=1}^{n} M_i \cdot \Delta \alpha_i$$

• The upper Riemann-Stieltjes integral of f over [a,b] w.r.t. α is

$$\int_{a}^{b} f(x) \, d\alpha(x) = \inf_{\mathcal{P}} \ U(\mathcal{P}, f, \alpha)$$

Exercise

① Define the lower sum $L(\mathcal{P}, f, \alpha)$ and lower integral $\int_a^b f d\alpha$.

Definitely a Riemann-Stieltjes Integral

Definition

If $\int_a^b f \, d\alpha = \int_a^b f \, d\alpha$, then f is Riemann-Stieltjes integrable and is written as $\int_a^b f(x) d\alpha(x)$ and $f \in \Re(\alpha)$ on [a, b].

Proposition

A function f is Riemann-Stieltjes integrable w.r.t. α on [a,b] iff for every $\epsilon>0$ there is a partition \mathcal{P} of [a,b] such that

$$U(\mathcal{P}, f, \alpha) - L(\mathcal{P}, f, \alpha) < \epsilon.$$

Theorem

If f is continuous on [a,b], then $f \in \Re(\alpha)$ on [a,b].

Theorem

If f is bounded on [a,b] with only finitely many points of discontinuity and α is continuous at each of f's discontinuities, then $f \in \mathfrak{R}(\alpha)$ on [a, b].

Properties of Riemann-Stieltjes Integrals

Proposition (Algebra of Riemann-Stieltjes Integrals)

Let f and $g \in \Re(\alpha)$ and in β on [a,b] and $c \in \mathbb{R}$. Then

- $\int_a^b cf \, d\alpha = c \int_a^b f \, d\alpha$ and $\int_a^b f \, d(c\alpha) = c \int_a^b f \, d\alpha$
- $\int_a^b (f+g) d\alpha = \int_a^b f d\alpha + \int_a^b g d\alpha$ and $\int_a^b f \, d(\alpha + \beta) = \int_a^b f \, d\alpha + \int_a^b f \, d\beta$
- $f \cdot g \in \Re(\alpha)$
- if $f \leq g$, then $\int_a^b f d\alpha \leq \int_a^b g d\alpha$
- $\bullet \left| \int_a^b f \, d\alpha \right| \le \int_a^b |f| \, d\alpha$
- Suppose that $\alpha' \in \Re$ and f is bounded. Then $f \in \Re(\alpha)$ iff $f\alpha' \in \Re$ and

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f \cdot \alpha' \, dx$$

Riemann-Stieltjes Integrals and Series

Proposition

If f is continuous at $c \in (a,b)$ and $\alpha(x) = r$ for $a \le x < c$ and $\alpha(x) = s$ for c < x < b, then

$$\int_{a}^{b} f d\alpha = f(c) \left(\alpha(c+) - \alpha(c-) \right)$$
$$= f(c) \left(s - r \right)$$

Proposition

Let $\alpha = \lfloor x \rfloor$, the greatest integer function. If f is continuous on [0,b], then

$$\int_0^b f(x) \, d\lfloor x \rfloor = \sum_{k=1}^{\lfloor b \rfloor} f(k)$$

Riemann-Stieltjes Integrated Exercises

Exercises

 $\int_{-1}^{1} e^{x} d|x|$

 $\int_0^{5/2} x \, d(x - |x|)$

- $\int_{-1}^{1} e^{x} d|x|$
- Set H to be the Heaviside function: i.e..

$$H(x) = \begin{cases} 0 & x \le 0 \\ 1 & \text{otherwise} \end{cases}.$$

Show that, if f is continuous at 0, then

$$\int_{-\infty}^{+\infty} f(x) \, dH(x) = f(0).$$

Lebesgue Integral

We start with simple functions.

Definition

A function has finite support if it vanishes outside a finite interval.

Definition

Let ϕ be a measurable simple function with finite support. If

$$\phi(x) = \sum_{i=1}^{n} a_i \chi_{A_i}(x)$$
 is a representation of ϕ , then

$$\int \phi(x) \, dx = \sum_{i=1}^{n} a_i \cdot \mu(A_i)$$

Definition

If E is a measurable set, then $\int_E \phi = \int \phi \cdot \chi_E.$

Integral Linearity

Proposition

If ϕ and ψ are measurable simple functions with finite support and $a, b \in \mathbb{R}$, then $\int (a\phi + b\psi) = a \int \phi + b \int \psi$. Further, if $\phi \leq \psi$ a.e., then $\int \phi \leq \int \psi$.

Proof (sketch).

I. Let $\phi = \sum_{i=1}^{N} \alpha_i \chi_{A_i}$ and $\psi = \sum_{i=1}^{M} \beta_i \chi_{B_i}$. Then show $a\phi + b\psi$ can be written as $a\phi + b\psi = \sum (a\alpha_{k_i} + b\beta_{k_i})\chi_{E_k}$ for the properly chosen E_k . Set A_0 and B_0 to be zero sets of ϕ and ψ . (Take

$${E_k : k = 0..K} = {A_j \cap B_k : j = 0..N, k = 0..M}.$$

II. Use the definition to show $\int \psi - \int \phi = \int (\psi - \phi) \ge \int 0 = 0$.

Steps to the Lebesgue Integral

Proposition

Let f be bounded on $E \in \mathfrak{M}$ with $\mu(E) < \infty$. Then f is measurable iff

$$\inf_{f \le \psi} \int_E \psi = \sup_{f \ge \phi} \int_E \phi$$

for all simple functions ϕ and ψ .

Proof.

I. Suppose f is bounded by M. Define

$$E_k = \left\{ x : \frac{k-1}{n} M < f(x) \le \frac{k}{n} M \right\}, \quad -n \le k \le n$$

The E_k are measurable, disjoint, and have union E. Set

$$\psi_n(x) = \frac{M}{n} \sum_{-n}^n k \chi_{E_k}(x), \qquad \phi_n(x) = \frac{M}{n} \sum_{-n}^n (k-1) \chi_{E_k}(x)$$

SLI (cont)

(proof cont).

Then $\phi_n(x) < f(x) < \psi(x)$, and so

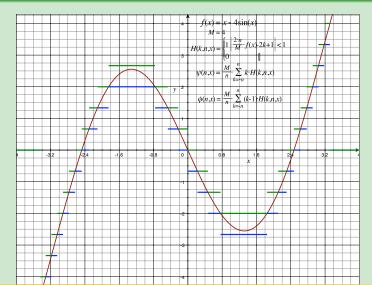
•
$$\inf \int_{E} \psi \le \int_{E} \psi_n = \frac{M}{n} \sum_{k=-n}^{n} k \, \mu(E_k)$$

•
$$\sup \int_E \phi \ge \int_E \phi_n = \frac{M}{n} \sum_{k=-n}^n (k-1) \mu(E_k)$$

Thus $0 \le \inf \int_E \psi - \sup \int_E \phi \le \frac{M}{n} \mu(E)$. Since *n* is arbitrary, equality holds. II. Suppose that $\inf \int_{\mathcal{P}} \psi = \sup \int_{\mathcal{P}} \phi$. Choose ϕ_n and ψ_n so that $\phi_n \leq f \leq \psi_n$ and $\int_{E} (\psi_n - \phi_n) < \frac{1}{n}$. The functions $\psi^* = \inf \psi_n$ and $\phi^* = \sup \phi_n$ are measurable and $\phi^* \leq f \leq \psi^*$. The set $\Delta = \{x : \phi^*(x) < \psi^*(x)\}$ has measure 0. Thus $\phi^* = \psi^*$ almost everywhere, so $\phi^* = f$ a.e. Hence f is measurable.

Example Steps

Example



Defining the Lebesgue Integral

Definition

If f is a bounded measurable function on a measurable set E with $m(E) < \infty$, then

$$\int_E f = \inf_{\psi \ge f} \int_E \psi$$

for all simple functions $\psi \geq f$.

Proposition

Let f be a bounded function defined on E = [a, b]. If f is Riemann integrable on [a, b], then f is measurable on [a, b] and

$$\int_{E} f = \int_{a}^{b} f(x) \, dx;$$

the Riemann integral of f equals the Lebesgue integral of f.

Properties of the Lebesgue Integral

Proposition (Algebra of the Lebesgue Integral)

If f and q are measurable on E, a set of finite measure, then

$$\bullet \int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g$$

$$ullet$$
 if $f=g$ a.e., then $\int_E f=\int_E g$

• if
$$f \leq g$$
 a.e., then $\int_E f \leq \int_E g$

$$\bullet \left| \int_{E} f \right| \leq \int_{E} |f|$$

• if
$$a \le f \le b$$
, then $a \cdot \mu(E) \le \int_E f \le b \cdot \mu(E)$

• if
$$A \cap B = \emptyset$$
, then $\int_{A \cup B} f = \int_A f + \int_B f$

Lebesgue Integral Examples

Examples

- Let $T(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q} \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$. Then $\int_{[0,1]} T = \int_0^1 T(x) \, dx$.
- Let $\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$. Then $\int_{[0,1]} \chi_{\mathbb{Q}} \neq \int_{0}^{1} \chi_{\mathbb{Q}}(x) dx$.
- Define

$$f_n(x) = \sum_{k=1}^{n+1} \left(\frac{k-1}{k} \cdot \chi_{\left[\frac{k-1}{k}, \frac{k}{k+1}\right)}(x) \right) + \frac{n}{n+1} \chi_{\left[\frac{n+1}{n+2}, 1\right]}(x).$$

Then

- \bullet f_n is a step function, hence integrable
- 2 $f'_n(x) = 0$ a.e.

Extending the Integral Definition

Definition

Let f be a nonnegative measurable function defined on a measurable set E. Define

$$\int_{E} f = \sup_{h \le f} \int_{E} h$$

where h is a bounded measurable function with finite support.

Proposition

If f and g are nonnegative measurable functions, then

$$\bullet \int_E c f = c \int_E f \text{ for } c > 0$$

$$\bullet \int_E f + g = \int_E f + \int_E g$$

• If $f \leq g$ a.e., then $\int_E f \leq \int_E g$

General Lebesgue's Integral

Definition

Set $f^+(x) = \max\{f(x), 0\}$ and $f^-(x) = \max\{-f(x), 0\}$. Then $f = f^+ - f^-$ and $|f| = f^+ + f^-$. A measurable function f is integrable over E iff both f^+ and f^- are integrable over E, and then $\int_E f = \int_E f^+ - \int_E f^-$.

Proposition

Let f and g be integrable over E and let $c \in \mathbb{R}$. Then

$$\bullet$$
 if $f \leq g$ a.e., then $\int_E f \leq \int_E g$

1 if A,B are disjoint measurable subsets of $E,\int_{A\cup B}f=\int_Af+\int_Bf$

Convergence Theorems

Theorem (Bounded Convergence Theorem)

Let $\{f_n: E \to \mathbb{R}\}$ be a sequence of measurable functions converging to f with $m(E) < \infty$. If there is a uniform bound M for all f_n , then

$$\int_{E} \lim_{n} f_{n} = \lim_{n} \int_{E} f_{n}$$

Proof (sketch).

Let $\epsilon > 0$.

- f_n converges "almost uniformly;" i.e., $\exists A, N$ s.t. $m(A) < \frac{\epsilon}{4M}$ and, for n > N, $x \in E A \implies |f_n(x) f(x)| \le \frac{\epsilon}{2 \, m(E)}$.

Lebesgue's Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)

Let $\{f_n: E \to \mathbb{R}\}$ be a sequence of measurable functions converging a.e. on E with $m(E) < \infty$. If there is an integrable function g on E such that $|f_n| \leq g$ then

$$\int_{E} \lim_{n} f_{n} = \lim_{n} \int_{E} f_{n}$$

Lemma

Under the conditions of the DCT, set $g_n = \sup \{f_n, f_{n+1}, \dots\}$ and

 $h_n = \inf_{k \ge n} \{f_n, f_{n+1}, \dots\}$. Then g_n and h_n are integrable and $\lim g_n = f = \lim h_n$ a.e.

Proof of DCT (sketch).

- Both q_n and h_n are monotone and converging. Apply MCT.
- $h_n \leq f_n \leq g_n \implies \int_E h_n \leq \int_E f_n \leq \int_E g_n$.

Increasing the Convergence

Theorem (Fatou's Lemma)

If $\{f_n\}$ is a sequence of measurable functions converging to f a.e. on E, then

$$\int_{E} \lim_{n} f_{n} \le \liminf_{n} \int_{E} f_{n}$$

Theorem (Monotone Convergence Theorem)

If $\{f_n\}$ is an increasing sequence of nonnegative measurable functions converging to f, then

$$\int \lim_{n} f_n = \lim_{n} \int f_n$$

Corollary (Beppo Levi Theorem (cf.))

If $\{f_n\}$ is a sequence of nonnegative measurable functions, then

$$\int \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int f_n$$

Sidebar: Littlewood's Three Principles

John Edensor Littlewood said,

The extent of knowledge required is nothing so great as sometimes supposed. There are three principles, roughly expressible in the following terms:

- every measurable set is nearly a finite union of intervals;
- every measurable function is nearly continuous;
- every convergent sequence of measurable functions is nearly uniformly convergent.

Most of the results of analysis are fairly intuitive applications of these ideas.

From Lectures on the Theory of Functions, Oxford, 1944, p. 26.

Extensions of Convergence

The sequence f_n converges to f ...

Convergence Diagrams

Definition (Convergence Almost Everywhere)

almost everywhere if $m(\{x: f_n(x) \nrightarrow f(x)\}) = 0$.

Definition (Convergence Almost Uniformly)

almost uniformly on E if, for any $\epsilon > 0$, there is a set $A \subset E$ with $m(A) < \epsilon$ so that f_n converges uniformly on E - A.

Definition (Convergence in Measure)

in measure if, for any $\epsilon > 0$, $\lim_{n \to \infty} m\left(\{x: |f_n(x) - f(x)| \ge \epsilon\}\right) = 0$.

Definition (Convergence in Mean (of order p > 1))

in mean if
$$\lim_{n \to \infty} \|f_n - f\|_p = \lim_{n \to \infty} \left[\int_E |f - f_n|^p \right]^{1/p} = 0$$

Integrated Exercises

Exercises

- **1** Prove: If f is integrable on E, then |f| is integrable on E.
- **2** Prove: If f is integrable over E, then $\left| \int_E f \right| \leq \int_E |f|$.
- **1** True or False: If |f| is integrable over E, then f is integrable over E.
- **1** Let f be integrable over E. For any $\epsilon > 0$, there is a simple (resp. step) function ϕ (resp. ψ) such that $\int_E |f \phi| < \epsilon$.
- **5** For $n = k + 2^{\nu}$, $0 \le k < 2^{\nu}$, define $f_n = \chi_{[k2^{-\nu},(k+1)2^{-\nu}]}$.
 - **1** Show that f_n does not converge for any $x \in [0, 1]$.
 - **2** Show that f_n does not converge a.e. on [0,1].
 - **3** Show that f_n does not converge almost uniformly on [0,1].
 - **3** Show that $f_n \to 0$ in measure.
 - **5** Show that $f_n \to 0$ in mean (of order 2).

References

Texts on analysis, integration, and measure:

- Mathematical Analysis, T. Apostle
- Principles of Mathematical Analysis, W. Rudin
- Real Analysis, H. Royden
- Lebesgue Integration, S. Chae
- Geometric Measure Theory, F. Morgan

Comparison of different types of integrals:

- A Garden of Integrals, F Burk
- Integral, Measure, and Derivative: A Unified Approach, G. Shilov and B. Gurevich