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Intro to Lebesgue Measure Introduction

Introduction to Lebesgue Measure
Prelude

There were two problems with calculus: there
are functions where

f(x) 6=
∫
f ′(x) dx (c.f., G-O #30)

f(x) 6= d

dx

[∫
f(x) dx

]
In his 1902 dissertation, “Intégrale, longueur,
aire,” Lebesgue wrote, “It thus seems to be nat-
ural to search for a definition of the integral
which makes integration the inverse operation
of differentiation in as large a range as possi-
ble.”
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Intro to Lebesgue Measure Introduction

What’s in a Measure

Goals
THE BEST measure would be a real-valued set functionµ that satisfies

1 µ(I) = length(I) where I is an interval
2 µ is translation invariant: µ(x+ E) = µ(E) for any x ∈ R
3 if {En} is pairwise disjoint, then µ(

⋃
nEn) =

∑
n µ(En)

4 dom(µ) = P(R) (the power set of R)

THE BAD NEWS:{
continuum hypothesis

+ axiom choice

}
=⇒ 1, 3, and 4 are incompatible

THE PLAN:

Give up on 4. (cf. Vitali)
1. and 2. are nonnegotiable
Weaken 3., then reclaim it
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Intro to Lebesgue Measure Sigma Algebras

Sigma Algebras

Definition
Sigma Algebra of Sets

Algebra: A collection of sets A is an algebra iff A is closed under unions
and complements.

σ-Algebra: An algebra of sets A is a σ-algebra iff A is closed under
countable unions.

Proposition

Let A be a nonempty algebra of sets of reals. Then
∅ and R ∈ A. (A ∈ A =⇒ Ac ∈ A. Then R = A ∪Ac ∈ A. Then Rc ∈ A.)
A is closed under intersection. (A ∩B = [Ac ∪Bc]c DeMorgan)

Let A be a nonempty σ-algebra of sets of reals. Then
A is closed under countable intersections.
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Intro to Lebesgue Measure Sigma Algebras

Sigma Samples

Examples
1 A = {∅,R}

2 F = {F ⊂ R : F is finite or F c is finite}
1 F is an algebra, the co-finite algebra
2 F is not a σ-algebra

For each r ∈ Q, the set {r} ∈ F . But
⋃
r∈Q{r} = Q /∈ F

3 Let A = {∅, [−1, 1], (−∞,−1) ∪ (1,∞),R}. Is A an algebra?

4 Any intersection of σ-algebras is a σ-algebra

5 Let B(R) be the smallest σ-algebra containing all the open sets, the Borel
σ-algebra.
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Intro to Lebesgue Measure Outer Measure

Outer Measure

Definition (Lebesgue Outer Measure)

Let E ⊂ R. Define the Lebesgue Outer Measure µ∗ of E to be

µ∗(E) = inf
E⊂

⋃
In

∑
n

`(In),

the infimum of the sums of the lengths of open interval covers of E.

Proposition (Monotonicity)

If A ⊆ B, then µ∗(A) ≤ µ∗(B).

Proposition

If I is an interval, then µ∗(I) = `(I).
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Intro to Lebesgue Measure Outer Measure

Outer Measure of an Interval

Proof.

I. I is closed and bounded (compact). Then I = [a, b].

1 For any ε > 0, [a, b] ⊂ (a− ε, b+ ε). So µ∗(I) ≤ b− a+ 2ε. Since ε is arbitrary,
µ∗(I) ≤ b− a.

2 Let {In} cover [a, b] with open intervals. There is a finite subcover for [a, b]. Order
the subcover so that consecutive intervals overlap. Then∑

N

`(Ik) = (b1 − a1) + (b2 − a2) + · · ·+ (bN − aN )

Rearrange∑
N

`(Ik) = bN − (aN − bN−1)− (aN−1 − bN−2)− · · · − (a2 − b1)− a1

≥ bN − a1 > b− a

Whence µ∗(I) = b− a.
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Intro to Lebesgue Measure Outer Measure

Outer Measure of an Interval, II

Proof (cont).

II. Let I be any bounded interval and ε > 0.
1 There is a closed interval J ⊂ I so that `(I)− ε < `(J). Then

`(I)− ε < `(J) = µ∗(J) ≤ µ∗(I) ≤ µ∗(Ī) = `(Ī) = `(I)

III. Suppose I is infinite.
1 Then for each n, there is a closed interval J ⊂ I s.t. `(J) = n

2 Thence µ∗(I) ≥ n for all n.

Aha! µ∗(I) =∞

Proposition

µ∗(Q) = 0

Proof.

Order Q as {r1, r2, . . . }. The collection {In = (rn − ε/2n, rn + ε/2n)} covers Q
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Intro to Lebesgue Measure Outer Measure

Countable Subadditivity

Theorem (µ∗ is Countably Subadditive)

Let {En} be a countable set sequence in R. Then µ∗
(⋃

n

En

)
≤
∑
n

µ∗(En)

Proof.

I. If µ∗(En) =∞ for any n, then done.
II. Let ε > 0

1 For each n find a cover {In,j}n∈N such that
∑
j∈N

`(In,j) < µ∗(En) + ε
2n

2 Then {In,j}n,j∈N covers E =
⋃
nEn.

3 Whereupon
µ∗(E) ≤

∑
n,j∈N

`(In,j) =
∑
n∈N

∑
j∈N

`(In,j)


<
∑
n∈N

[
µ∗(En) +

ε

2n

]
=
∑
n∈N

[µ∗(En)] + ε
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Intro to Lebesgue Measure Lebesgue Measure

Open Holding & Lebesgue’s Measure

Corollary

Given E ⊆ R and ε > 0, there is an open set O ⊇ E s.t.

µ∗(E) ≤ µ∗(O) ≤ µ∗(E) + ε

Definition (Carathéodory’s Condition)

A set E is Lebesgue measurable iff for every (test) set A,

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)
Let M be the collection of all Lebesgue measurable sets.

Corollary

For any A and E,

µ∗(A) = µ∗
(
(A ∩ E) ∪ (A ∩ Ec)

)
≤ µ∗(A ∩ E) + µ∗(A ∩ Ec)
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Intro to Lebesgue Measure Lebesgue Measure

Much Ado About Nothing

Theorem

If µ∗(E) = 0, then E ∈M; i.e., E is measurable.

Proof.
Given the previous corollary, we need only show that

µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ µ∗(A)

1 Since A ∩ E ⊂ E, then µ∗(A ∩ E) ≤ µ∗(E) = 0.
2 Since A ∩ Ec ⊂ A, then µ∗(A ∩ Ec) ≤ µ∗(A).

Whence µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ 0 + µ∗(A) = µ∗(A).

Corollary

µ∗(Q) = 0 =⇒ Q ∈M

WmCB (BauldryWC@appstate.edu) MAT 5620, Analysis II Spring, 2017 10 / 52

http://www.youtube.com/watch?v=PIACPr5XEQM
BauldryWC@appstate.edu


Intro to Lebesgue Measure Lebesgue Measure

Unions Work

Theorem

A finite union of measurable sets is measurable.

Proof.

Let E1 and E2 ∈M. Let A be a test set.
1 Use A ∩ Ec1 as a test set for E2 which is measurable. Thence

µ∗(A ∩ Ec1) = µ∗((A ∩ Ec1) ∩ E2) + µ∗((A ∩ Ec1) ∩ Ec2)

2 Note A ∩ (E1 ∪ E2) = (A ∩ E1) ∪ (A ∩ E2 ∩ Ec1). Whereupon

µ∗(A ∩ (E1 ∪ E2)) + µ∗(A ∩ (E1 ∪ E2)c)

= µ∗(A ∩ (E1 ∪ E2)) + µ∗(A ∩ (Ec1 ∩ Ec2))

≤
[
µ∗(A ∩ E1) + µ∗(A ∩ E2 ∩ Ec1)

]
+ µ∗(A ∩ Ec1 ∩ Ec2)

≤ µ∗(A ∩ E1) +
[
µ∗(A ∩ Ec1 ∩ E2) + µ∗(A ∩ Ec1 ∩ Ec2)

]
= µ∗(A ∩ E1) + µ∗(A ∩ Ec1)

= µ∗(A)
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Intro to Lebesgue Measure Lebesgue Measure

Countable Unions Work

Theorem
The countable union of measurable sets is measurable.

Proof.

Let Ek ∈M and E =
⋃
nEn. Choose a test set A.

We need to show µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ µ∗(A).
1 Set Fn =

⋃n
Ek and F =

⋃∞
Ek = E. Define G1 = E1, G2 = E2 − E1,

. . . , Gk = Ek −
⋃k−1

Ej , and G =
⋃
Gk. Then

(i) Gi ∩Gj = ∅, (i 6= j) (ii) Fn =

n⋃
Gk (iii) F = G = E

2 Test Fn with A to obtain µ∗(A) = µ∗(A ∩ Fn) + µ∗(A ∩ F cn)

3 Test Gn with A ∩ Fn to obtain

µ∗(A ∩ Fn) = µ∗((A ∩ Fn) ∩Gn) + µ∗((A ∩ Fn) ∩Gcn)

= µ∗(A ∩Gn) + µ∗(A ∩ Fn−1)
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Intro to Lebesgue Measure Lebesgue Measure

Countable Unions Work, II

Proof.

4 Iterate µ∗(A ∩ Fn) = µ∗(A ∩Gn) + µ∗(A ∩ Fn−1) from 3 to have

µ∗(A ∩ Fn) =
n∑
k=1

µ∗(A ∩Gk)

5 Since Fn ⊆ F , then F c ⊆ F cn for all n, then

µ∗(A ∩ F cn) ≥ µ∗(A ∩ F c)
6 Whence

µ∗(A) ≥
n∑
k=1

µ∗(A ∩Gk) + µ∗(A ∩ F c)

The summation is increasing & bounded, so convergent.
7 However ∞∑

k=1

µ∗(A ∩Gk) ≥ µ∗
(
∞⋃
k=1

(A ∩Gk)

)
= µ∗(A ∩ F )

Aha! µ∗(A) ≥ µ∗(A ∩ F ) + µ∗(A ∩ F c)
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Intro to Lebesgue Measure Lebesgue Measure

Everything Works

Corollary

The collection of Lebesgue measurable sets M is a σ-algebra.

Corollary

The Borel sets are measurable. (There are measurable, non-Borel sets.)

B(R) $ M $ P(R)

Definition (Lebesgue Measure)

Lebesgue measure µ is µ∗ restricted to M. So µ :M→ [0,∞].

Definition (Almost Everywhere)

A property P holds almost everywhere (a.e.) iff µ
(
{x : ¬P (x)}

)
= 0.
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Intro to Lebesgue Measure Lebesgue Measure

The Return of Additivity
Theorem

Let {En} be a countable (finite or infinite) sequence of pairwise disjoint sets in M.
Then

µ

(
∞⋃
k=1

Ek

)
=

∞∑
k=1

µ(Ek)

Proof.

I. n is finite.
1 For n = 1,D
2
(⋃n

k=1Ek
)
∩ En = En and

(⋃n
k=1Ek

)
∩ Ecn =

⋃n−1
k=1 Ek

3 µ
(⋃n

k=1Ek
)

= µ
([⋃n

k=1Ek
]
∩ En

)
+ µ

([⋃n
k=1Ek

]
∩ Ecn

)
= µ(En) + µ

(⋃n−1
k=1 Ek

)
= µ(En) +

∑n−1
k=1 µ(Ek) =

∑n
k=1 µ(Ek)

II. n is infinite.
1
⋃n
k=1Ek ⊂

⋃∞
k=1Ek =⇒ µ

(⋃n
k=1Ek

)
=
∑n
k=1 µ(Ek) ≤ µ

(⋃∞
k=1Ek

)
2 A bounded & increasing sum converges. Thus

∑∞
k=1 µ(Ek) ≤ µ

(⋃∞
k=1Ek

)
3 Subadditivity finishes the proof. 2
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Intro to Lebesgue Measure Lebesgue Measure

Adding an Example

Example

Set En =
(
n−1
n , n

n+1

)
for n = 1..∞.

1 The En are pairwise disjoint.

2 µ(En) = `(En) = n
n+1 −

n−1
n = 1

n(n+1)

3 µ

( ∞⋃
n=1

En

)
=
∞∑
n=1

µ(En) =
∞∑
n=1

1
n(n+1) =

∞∑
n=1

[
1
n −

1
n+1

]
Whence µ

( ∞⋃
n=1

En

)
= 1.

NOTA BENE:
∞⋃
n=1

En=(0, 1)−
{

1
2 ,

2
3 ,

3
4 , . . .

}
. Hence

∞⋃
n=1

En=(0, 1) a.e.
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Intro to Lebesgue Measure Lebesgue Measure

Matryoshka

Theorem

If {En} is a seq of nested, measurable sets with µ(E1) <∞, then

µ

(
∞⋂
n=1

En

)
= lim
n→∞

µ(En)

Proof.

1 Set E =
∞⋂
k=1

Ek. Set Fk = Ek − Ek+1. The Fk are pairwise disjoint.

2 Since
∞⋃
k=1

Fk = E1−E, then µ(E1−E) =
∞∑
k=1

µ(Fk) =
∞∑
k=1

µ(Ek − Ek+1).

3 If A ⊃ B, then µ(A−B) = µ(A)− µ(B). Apply to the formula above.

4 µ(E1)− µ(E) =
∞∑
k=1

µ(Ek)− µ(Ek+1) = µ(E1)− lim
k→∞

µ(Ek)

Since µ(E1) is finite, we’re done.
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Intro to Lebesgue Measure Lebesgue Measure

The Cantor Set

Cantor Sets1

I. Constructing C
1 Set C0 = [0, 1]

2 Set C1 = C0 − ( 1
3
, 2
3
)

3 Set C2 = C1 − ( 1
32
, 2
32

)− ( 7
32
, 8
32

)

4 Set C3 = C2 − ( 1
33
, 2
33

)− ( 7
33
, 8
33

)− ( 19
33
, 20
33

)− ( 25
33
, 26
33

)

5 Let C =
⋂
Ci

II. Properties of C
1 µ(C0) = 1, µ(C1) = 2/3,
µ(C2) = 4/9, µ(C3) = 8/27, . . . So
µ(Cn) = 2

3
µ(Cn−1) = 2n

3n
Whence

µ(C) = 0.
2 C is uncountable
3 C is perfect

4 C is nowhere dense
5 C is compact
6 C is totally disconnected
7 (∀i) ∂Ci ⊂ C
8 (∀i) 1

4
/∈ ∂Ci, but 1

4
∈ C

1Cantor gave the set in a footnote to show “perfect” 6⊂ “everywhere dense”.
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Intro to Lebesgue Measure Lebesgue Measure

Not So Strange After All

Theorem
Let E ⊆ R and let ε > 0. TFAE:

1 E is measurable
2 There is an open set O ⊃ E s.t. µ∗(O − E) < ε

3 There is a closed set F ⊂ E s.t. µ∗(E − F ) < ε

Proposition

Let S and T be measurable subsets of R. Then

µ(S ∪ T ) + µ(S ∩ T ) = µ(S) + µ(T )
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Intro to Lebesgue Measure Lebesgue Measure

Functionally Measurable

Theorem (Measurability Conditions for Functions)

Let f :D → R∞ for some D ∈M. TFAE
1 For each r ∈ R, the set f−1

(
(r,∞)

)
is measurable.

2 For each r ∈ R, the set f−1
(
[r,∞)

)
is measurable.

3 For each r ∈ R, the set f−1
(
(−∞, r)

)
is measurable.

4 For each r ∈ R, the set f−1
(
(−∞, r]

)
is measurable.

Proof.

1⇒ 2: {x | f(x) ≥ r} =
⋂
n{x | f(x) > r − 1/n}

2⇒ 3: {x | f(x) < r} = D − {x | f(x) ≥ r}

3⇒ 4: {x | f(x) ≤ r} =
⋂
n{x | f(x) < r + 1/n}

4⇒ 1: {x | f(x) > r} = D − {x | f(x) ≤ r}
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Intro to Lebesgue Measure Lebesgue Measure

The Measurably Functional

Corollary

If f satisfies any measurability condition, then {x | f(x) = r} is measurable for each r.

Definition (Measurable Function)

If a function f :D → R∞ has measurable domain D and satisfies any of the
measurability conditions, then f is measurable.

Definition

Step function: φ : [a, b]→ R∞ is a step function if there is a partition a = x0
< x1 < · · · < xn = b s.t. φ is constant on each interval Ik = (xk−1, xk), then

φ(x) =

n∑
k=1

akχIk (x)

Simple function: A function ψ with range {a1, a2, . . . , an} where each set ψ−1(ak) is
measurable is a simple function.
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Intro to Lebesgue Measure Lebesgue Measure

Simply Stepping

Proposition

Step functions and simple functions are measurable

Theorem (Algebra of Measurable Functions)

Let f and g be measurable on a common domain D, and let c ∈ R. Then

1 f + c

2 c · f

3 f ± g
4 f2

5 f · g

are all measurable.

Proof.

• D
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Intro to Lebesgue Measure Lebesgue Measure

Sequencing

Theorem

Let {fn} be a sequence of measurable functions on a common domain D. Then

1 sup {f1, . . . , fn}

2 inf {f1, . . . , fn}

3 sup
n→∞

fn

4 inf
n→∞

fn

5 lim sup
n→∞

fn

6 lim inf
n→∞

fn

are all measurable.

Proof.

1 Set f = {f1, . . . , fn}. Then {f(x) > r} =

n⋃
k=1

{fk(x) > r}.

3 Set F = supn fn. Then {F (x) > r} =

∞⋃
k=1

{fk(x) > r}.

5 Set Φ = lim supn fn. Then lim sup
n→∞

fn = inf
n

[
sup
k≥n

fk

]
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Intro to Lebesgue Measure Lebesgue Measure

Zeroing

Theorem

If f is measurable and f = g a.e., then g is measurable.

Definition (Converence Almost Everywhere)

A sequence {fn} converges to f almost everywhere, written as fn → f a.e., iff
µ
(
{x :fn(x) 6→ f(x)}

)
= 0.

Theorem

Let f : [a, b]→ R. Then f is measurable iff there is a seq. of simple functions {ψn}
converging to f a.e.
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Intro to Lebesgue Measure Lebesgue Measure

A Simple Proof

Proof.

(⇒) Wolog f ≥ 0.
1 Define An,k =

{
x
∣∣k−1

2n ≤ f(x) < k
2n

}
for k = 1..(n · 2n) and

A0,n = [a, b]−
n2n⋃
k=1

An,k

2 Set ψn(x) = nχA0,n(x) +

n2n∑
k=1

k − 1

2n
· χAn,k(x)

3 Then
1 ψ1 ≤ ψ2 ≤ · · ·
2 If 0 ≤ f(x) ≤ n, then |f − ψn| < 2−n

3 limn ψ = f a.e.

(⇐) D

Maple Example
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Intro to Lebesgue Measure Lebesgue Integration

Integration

We began by looking at two examples of integration problems.
The Riemann integral over [0, 1] of a function with infinitely many
discontinuities didn’t exist even though the points of discontinuity formed
a set of measure zero.
(The points of discontinuity formed a dense set in [0, 1].)
The limit of a sequence of Riemann integrable functions did not equal the
integral of the limit function of the sequence.
(Each function had area 1/2, but the limit of the sequence was the zero
function.)

We will recall Riemann integration, then Riemann-Stieltjes integration, and
last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy, Gauge, Perron,
etc. See the list given in the “See also” section of Integrals on Mathworld.
Burk’s A Garden of Integrals is an excellent introduction.
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Intro to Lebesgue Measure Lebesgue Integration

Riemann Integral

Definition

A partition P of [a, b] is a finite set of points such that
P = {a = x0 < x1 < · · · < xn−1 < xn = b}.
Set Mi = sup f(x) on [xi−1, xi]. The upper sum2of f on [a, b] w.r.t. P is

U(P, f) =
n∑
i=1

Mi ·∆xi

The upper Riemann integral of f over [a, b] is∫̄ b

a

f(x) dx = inf
P

U(P, f)

Exercise

1 Define the lower sum L(P, f) and the lower integral
∫
¯

b
af .

2 Actually, the Upper Riemann-Darboux sum.
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Intro to Lebesgue Measure Lebesgue Integration

Definitely a Riemann Integral

Definition

If
∫̄ b
a
f(x) dx =

∫
¯
b
af(x) dx, then f is Riemann integrable and is written as

∫ b
a
f(x) dx

and f ∈ R on [a, b].

Proposition

A function f is Riemann integrable on [a, b] if and only if for every ε > 0 there is a
partition P of [a, b] such that

U(P, f)− L(P, f) < ε.

Theorem

If f is continuous on [a, b], then f ∈ R on [a, b].

Theorem

If f is bounded on [a, b]with only finitely many points of discontinuity, then f ∈ R on
[a, b].
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Intro to Lebesgue Measure Lebesgue Integration

Properties of Riemann Integrals

Proposition (Algebra of Riemann Integrals)

Let f and g ∈ R on [a, b] and c ∈ R. Then∫ b
a
cf dx = c

∫ b
a
f dx∫ b

a
(f + g) dx =

∫ b
a
f dx+

∫ b
a
g dx

f · g ∈ R

if f ≤ g, then
∫ b
a
f dx ≤

∫ b
a
g dx∣∣∣∫ ba f dx∣∣∣ ≤ ∫ ba |f | dx

Define F (x) =
∫ x
a
f(t) dt. Then F is continuous and, if f is continuous at

x0, then F ′(x0) = f(x0)

If F ′ = f on [a, b], then
∫ b
a
f(x) dx = F (b)− F (a)
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Intro to Lebesgue Measure Lebesgue Integration

Riemann Integrated Exercises

Exercises

1 If
∫ b
a
|f(x)| dx = 0, then f = 0.

2 Show why
∫ 1

0
χQ(x) dx does not exist.

3 Define

Sn(x) =

n+1∑
k=1

(
k − 1

k
· χ[ k−1

k , k
k+1 )(x)

)
+

n

n+ 1
χ[n+1

n+2 ,1]
(x).

1 How many discontinuities does Sn have?
2 Prove that S ′n(x) = 0 a.e.
3 Calculate

∫ 1

0
Sn(x) dx.

4 What is S∞?
5 Does

∫ 1

0
S∞(x) dx exist?

(See an animated graph of SN .)
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Intro to Lebesgue Measure Lebesgue Integration

Riemann-Stieltjes Integral

Definition

Let α(x) be a monotonically increasing function on [a, b]. Set
∆αi = α(xi)− α(xi−1).

Set Mi = sup f(x) on [xi−1, xi]. The upper sum of f on [a, b] w.r.t. α and
P is

U(P, f, α) =

n∑
i=1

Mi ·∆αi

The upper Riemann-Stieltjes integral of f over [a, b] w.r.t. α is∫̄ b

a

f(x) dα(x) = inf
P

U(P, f, α)

Exercise
1 Define the lower sum L(P, f, α) and lower integral

∫
¯
b
afdα.
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Intro to Lebesgue Measure Lebesgue Integration

Definitely a Riemann-Stieltjes Integral

Definition

If
∫̄ b
a
f dα =

∫
¯
b
af dα, then f is Riemann-Stieltjes integrable and is written as∫ b

a
f(x) dα(x) and f ∈ R(α) on [a, b].

Proposition

A function f is Riemann-Stieltjes integrable w.r.t. α on [a, b] iff for every ε > 0 there is a
partition P of [a, b] such that

U(P, f, α)− L(P, f, α) < ε.

Theorem

If f is continuous on [a, b], then f ∈ R(α) on [a, b].

Theorem

If f is bounded on [a, b]with only finitely many points of discontinuity and α is
continuous at each of f ’s discontinuities, then f ∈ R(α) on [a, b].
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Intro to Lebesgue Measure Lebesgue Integration

Properties of Riemann-Stieltjes Integrals

Proposition (Algebra of Riemann-Stieltjes Integrals)

Let f and g ∈ R(α) and in β on [a, b] and c ∈ R. Then∫ b
a
cf dα = c

∫ b
a
f dα and

∫ b
a
f d(cα) = c

∫ b
a
f dα∫ b

a
(f + g) dα =

∫ b
a
f dα+

∫ b
a
g dα and∫ b

a
f d(α+ β) =

∫ b
a
f dα+

∫ b
a
f dβ

f · g ∈ R(α)

if f ≤ g, then
∫ b
a
f dα ≤

∫ b
a
g dα∣∣∣∫ ba f dα∣∣∣ ≤ ∫ ba |f | dα

Suppose that α′ ∈ R and f is bounded. Then f ∈ R(α) iff fα′ ∈ R and∫ b

a

f dα =

∫ b

a

f · α′ dx
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Intro to Lebesgue Measure Lebesgue Integration

Riemann-Stieltjes Integrals and Series

Proposition

If f is continuous at c ∈ (a, b) and α(x) = r for a ≤ x < c and α(x) = s for
c < x ≤ b, then ∫ b

a

f dα = f(c) (α(c+)− α(c−))

= f(c) (s− r)

Proposition

Let α = bxc, the greatest integer function. If f is continuous on [0, b], then∫ b

0

f(x) dbxc =

bbc∑
k=1

f(k)
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Intro to Lebesgue Measure Lebesgue Integration

Riemann-Stieltjes Integrated Exercises

Exercises

1
∫ 1

0
x dx2

2
∫ π/2
0

cos(x) d sin(x)

3
∫ 5/2

0
x d(x− bxc)

4
∫ 1

−1 e
xd|x|

5
∫ 3/2

−3/2 e
xdbxc

6
∫ 1

−1 e
xdbxc

7 Set H to be the Heaviside function; i.e.,

H(x) =

{
0 x ≤ 0

1 otherwise
.

Show that, if f is continuous at 0, then∫ +∞

−∞
f(x) dH(x) = f(0).
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Intro to Lebesgue Measure Lebesgue Integration

Lebesgue Integral

We start with simple functions.

Definition
A function has finite support if it vanishes outside a finite interval.

Definition
Let φ be a measurable simple function with finite support. If

φ(x) =

n∑
i=1

aiχAi(x) is a representation of φ, then∫
φ(x) dx =

n∑
i=1

ai · µ(Ai)

Definition

If E is a measurable set, then
∫
E

φ =

∫
φ · χE .
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Intro to Lebesgue Measure Lebesgue Integration

Integral Linearity

Proposition

If φ and ψ are measurable simple functions with finite support and a, b ∈ R,
then

∫
(aφ+ bψ) = a

∫
φ+ b

∫
ψ. Further, if φ ≤ ψ a.e., then

∫
φ ≤

∫
ψ.

Proof (sketch).

I. Let φ =

N∑
αiχAi and ψ =

M∑
βiχBi . Then show aφ+ bψ can be written as

aφ+ bψ =

K∑
(aαki + bβkj )χEk for the properly chosen Ek. Set A0 and B0 to

be zero sets of φ and ψ. (Take
{Ek : k = 0..K} = {Aj ∩Bk : j = 0..N, k = 0..M}.)

II. Use the definition to show
∫
ψ −

∫
φ =

∫
(ψ − φ) ≥

∫
0 = 0.
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Intro to Lebesgue Measure Lebesgue Integration

Steps to the Lebesgue Integral

Proposition

Let f be bounded on E ∈M with µ(E) <∞. Then f is measurable iff

inf
f≤ψ

∫
E

ψ = sup
f≥φ

∫
E

φ

for all simple functions φ and ψ.

Proof.

I. Suppose f is bounded by M. Define

Ek =

{
x :

k − 1

n
M < f(x) ≤ k

n
M

}
, −n ≤ k ≤ n

The Ek are measurable, disjoint, and have union E. Set

ψn(x) =
M

n

n∑
−n

k χEk (x), φn(x) =
M

n

n∑
−n

(k − 1)χEk (x)
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Intro to Lebesgue Measure Lebesgue Integration

SLI (cont)

(proof cont).

Then φn(x) ≤ f(x) ≤ ψ(x), and so

inf

∫
E

ψ ≤
∫
E

ψn =
M

n

n∑
k=−n

k µ(Ek)

sup

∫
E

φ ≥
∫
E

φn =
M

n

n∑
k=−n

(k − 1)µ(Ek)

Thus 0 ≤ inf
∫
E
ψ − sup

∫
E
φ ≤ M

n µ(E). Since n is arbitrary, equality holds.
II. Suppose that inf

∫
E
ψ = sup

∫
E
φ. Choose φn and ψn so that φn ≤ f ≤ ψn

and
∫
E

(ψn − φn) < 1
n . The functions ψ∗ = inf ψn and φ∗ = supφn are

measurable and φ∗ ≤ f ≤ ψ∗. The set ∆ = {x : φ∗(x) < ψ∗(x)} has measure
0. Thus φ∗ = ψ∗ almost everywhere, so φ∗ = f a.e. Hence f is
measurable.

WmCB (BauldryWC@appstate.edu) MAT 5620, Analysis II Spring, 2017 39 / 52

BauldryWC@appstate.edu


Intro to Lebesgue Measure Lebesgue Integration

Example Steps
Example

-4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4

-4

-3

-2

-1

1

2

3

4
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Intro to Lebesgue Measure Lebesgue Integration

Defining the Lebesgue Integral

Definition

If f is a bounded measurable function on a measurable set E with m(E) <∞,
then ∫

E

f = inf
ψ≥f

∫
E

ψ

for all simple functions ψ ≥ f.

Proposition

Let f be a bounded function defined on E = [a, b]. If f is Riemann integrable
on [a, b], then f is measurable on [a, b] and∫

E

f =

∫ b

a

f(x) dx;

the Riemann integral of f equals the Lebesgue integral of f.
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Intro to Lebesgue Measure Lebesgue Integration

Properties of the Lebesgue Integral

Proposition (Algebra of the Lebesgue Integral)

If f and g are measurable on E, a set of finite measure, then∫
E

(αf + βg) = α

∫
E

f + β

∫
E

g

if f = g a.e., then
∫
E

f =

∫
E

g

if f ≤ g a.e., then
∫
E

f ≤
∫
E

g∣∣∣∣∫
E

f

∣∣∣∣ ≤ ∫
E

|f |

if a ≤ f ≤ b, then a · µ(E) ≤
∫
E

f ≤ b · µ(E)

if A ∩B = ∅, then
∫
A∪B

f =

∫
A

f +

∫
B

f
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Intro to Lebesgue Measure Lebesgue Integration

Lebesgue Integral Examples

Examples

1 Let T (x) =

{
1
q x = p

q ∈ Q
0 otherwise

}
. Then

∫
[0,1]

T =

∫ 1

0

T (x) dx.

2 Let χQ(x) =

{
1 x ∈ Q
0 otherwise

}
. Then

∫
[0,1]

χQ 6=
∫ 1

0

χQ(x)dx.

3 Define

fn(x) =

n+1∑
k=1

(
k − 1

k
· χ[ k−1

k , k
k+1 )(x)

)
+

n

n+ 1
χ[n+1

n+2 ,1]
(x).

Then
1 fn is a step function, hence integrable
2 f ′n(x) = 0 a.e.

3
1

4
≤
∫
[0,1]

fn =

∫ 1

0

fn(x) dx <
3

8
Graph it!
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Intro to Lebesgue Measure Lebesgue Integration

Extending the Integral Definition

Definition
Let f be a nonnegative measurable function defined on a measurable set E.
Define ∫

E

f = sup
h≤f

∫
E

h

where h is a bounded measurable function with finite support.

Proposition

If f and g are nonnegative measurable functions, then∫
E

c f = c

∫
E

f for c > 0∫
E

f + g =

∫
E

f +

∫
E

g

If f ≤ g a.e., then
∫
E

f ≤
∫
E

g
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Intro to Lebesgue Measure Lebesgue Integration

General Lebesgue’s Integral

Definition

Set f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}. Then f = f+ − f− and
|f | = f+ + f−. A measurable function f is integrable over E iff both f+ and f− are

integrable over E, and then
∫
E

f =

∫
E

f+ −
∫
E

f−.

Proposition

Let f and g be integrable over E and let c ∈ R. Then

1

∫
E

cf = c

∫
E

f

2

∫
E

f + g =

∫
E

f +

∫
E

g

3 if f ≤ g a.e., then
∫
E

f ≤
∫
E

g

4 if A, B are disjoint measurable subsets of E,
∫
A∪B

f =

∫
A

f +

∫
B

f
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Intro to Lebesgue Measure Convergence Theorems

Convergence Theorems

Theorem (Bounded Convergence Theorem)

Let {fn : E → R} be a sequence of measurable functions converging to f with
m(E) <∞. If there is a uniform bound M for all fn, then∫

E

lim
n
fn = lim

n

∫
E

fn

Proof (sketch).

Let ε > 0.

1 fn converges “almost uniformly;” i.e., ∃A,N s.t. m(A) <
ε

4M
and, for n > N,

x ∈ E −A =⇒ |fn(x)− f(x)| ≤ ε

2m(E)
.

2

∣∣∣∣∫
E

fn −
∫
E

f

∣∣∣∣ =

∣∣∣∣∫
E

fn − f
∣∣∣∣ ≤ ∫

E

|fn − f | =
(∫

E−A
+

∫
A

)
|fn − f |

3

∫
E−A
|fn − f |+

∫
A

|fn|+ |f | ≤
ε

2m(E)
·m(E) + 2M · ε

4M
= ε
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Intro to Lebesgue Measure Convergence Theorems

Lebesgue’s Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)

Let {fn : E → R} be a sequence of measurable functions converging a.e. on E with
m(E) <∞. If there is an integrable function g on E such that |fn| ≤ g then∫

E

lim
n
fn = lim

n

∫
E

fn

Lemma

Under the conditions of the DCT, set gn = sup
k≥n
{fn, fn+1, . . . } and

hn = inf
k≥n
{fn, fn+1, . . . }. Then gn and hn are integrable and lim gn = f = limhn a.e.

Proof of DCT (sketch).
Both gn and hn are monotone and converging. Apply MCT.

hn ≤ fn ≤ gn =⇒
∫
E
hn ≤

∫
E
fn ≤

∫
E
gn.
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Intro to Lebesgue Measure Convergence Theorems

Increasing the Convergence

Theorem (Fatou’s Lemma)

If {fn} is a sequence of measurable functions converging to f a.e. on E, then∫
E

lim
n
fn ≤ lim inf

n

∫
E

fn

Theorem (Monotone Convergence Theorem)

If {fn} is an increasing sequence of nonnegative measurable functions converging to
f, then ∫

lim
n
fn = lim

n

∫
fn

Corollary (Beppo Levi Theorem (cf.))

If {fn} is a sequence of nonnegative measurable functions, then∫ ∞∑
n=1

fn =

∞∑
n=1

∫
fn
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Intro to Lebesgue Measure Convergence Theorems

Sidebar: Littlewood’s Three Principles

John Edensor Littlewood said,
The extent of knowledge required is nothing so great as sometimes
supposed. There are three principles, roughly expressible in the
following terms:

every measurable set is nearly a finite union of intervals;
every measurable function is nearly continuous;
every convergent sequence of measurable functions is nearly
uniformly convergent.

Most of the results of analysis are fairly intuitive applications of these
ideas.

From Lectures on the Theory of Functions, Oxford, 1944, p. 26.
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Intro to Lebesgue Measure Convergence Theorems

Extensions of Convergence

The sequence fn converges to f . . . Convergence Diagrams

Definition (Convergence Almost Everywhere)

almost everywhere if m({x : fn(x) 9 f(x)}) = 0.

Definition (Convergence Almost Uniformly)

almost uniformly on E if, for any ε > 0, there is a set A ⊂ E with m(A) < ε so that fn
converges uniformly on E −A.

Definition (Convergence in Measure)

in measure if, for any ε > 0, lim
n→∞

m ({x : |fn(x)− f(x)| ≥ ε})=0.

Definition (Convergence in Mean (of order p > 1))

in mean if lim
n→∞

‖fn − f‖p = lim
n→∞

[∫
E

|f − fn|p
]1/p

= 0
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Intro to Lebesgue Measure Convergence Theorems

Integrated Exercises

Exercises
1 Prove: If f is integrable on E, then |f | is integrable on E.

2 Prove: If f is integrable over E, then
∣∣∣∣∫
E

f

∣∣∣∣ ≤ ∫
E

|f |.

3 True or False: If |f | is integrable over E, then f is integrable over E.
4 Let f be integrable over E. For any ε > 0, there is a simple (resp. step)

function φ (resp. ψ) such that
∫
E

|f − φ| < ε.

5 For n = k + 2ν , 0 ≤ k < 2ν , define fn = χ[k2−ν ,(k+1)2−ν ].
1 Show that fn does not converge for any x ∈ [0, 1].
2 Show that fn does not converge a.e. on [0, 1].
3 Show that fn does not converge almost uniformly on [0, 1].
4 Show that fn → 0 in measure.
5 Show that fn → 0 in mean (of order 2).
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Intro to Lebesgue Measure Convergence Theorems
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