
Intro to Lebesgue Measure Introduction

Introduction to Lebesgue Measure
Prelude

There were two problems with calculus: there
are functions where

f(x) 6=
∫
f ′(x) dx (c.f., G-O #30)

f(x) 6= d

dx

[∫
f(x) dx

]
In his 1902 dissertation, “Intégrale, longueur,
aire,” Lebesgue wrote, “It thus seems to be nat-
ural to search for a definition of the integral
which makes integration the inverse operation
of differentiation in as large a range as possi-
ble.”
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What’s in a Measure

Goals
THE BEST measure would be a real-valued set functionµ that satisfies

1 µ(I) = length(I) where I is an interval
2 µ is translation invariant: µ(x+ E) = µ(E) for any x ∈ R
3 if {En} is pairwise disjoint, then µ(

⋃
nEn) =

∑
n µ(En)

4 dom(µ) = P(R) (the power set of R)

THE BAD NEWS:{
continuum hypothesis

+ axiom choice

}
=⇒ 1, 3, and 4 are incompatible

THE PLAN:

Give up on 4. (cf. Vitali)
1. and 2. are nonnegotiable
Weaken 3., then reclaim it
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Sigma Algebras

Definition
Sigma Algebra of Sets

Algebra: A collection of sets A is an algebra iff A is closed under unions
and complements.

σ-Algebra: An algebra of sets A is a σ-algebra iff A is closed under
countable unions.

Proposition

Let A be a nonempty algebra of sets of reals. Then
∅ and R ∈ A. (A ∈ A =⇒ Ac ∈ A. Then R = A ∪Ac ∈ A. Then Rc ∈ A.)
A is closed under intersection. (A ∩B = [Ac ∪Bc]

c DeMorgan)

Let A be a nonempty σ-algebra of sets of reals. Then
A is closed under countable intersections.
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Sigma Samples

Examples
1 A = {∅,R}

2 F = {F ⊂ R : F is finite or F c is finite}
1 F is an algebra, the co-finite algebra
2 F is not a σ-algebra

For each r ∈ Q, the set {r} ∈ F . But
⋃

r∈Q{r} = Q /∈ F

3 Let A = {∅, [−1, 1], (−∞,−1) ∪ (1,∞),R}. Is A an algebra?

4 Any intersection of σ-algebras is a σ-algebra

5 Let B(R) be the smallest σ-algebra containing all the open sets, the Borel
σ-algebra.
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Outer Measure

Definition (Lebesgue Outer Measure)

Let E ⊂ R. Define the Lebesgue Outer Measure µ∗ of E to be

µ∗(E) = inf
E⊂

⋃
In

∑
n

`(In),

the infimum of the sums of the lengths of open interval covers of E.

Proposition (Monotonicity)

If A ⊆ B, then µ∗(A) ≤ µ∗(B).

Proposition

If I is an interval, then µ∗(I) = `(I).
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Outer Measure of an Interval

Proof.

I. I is closed and bounded (compact). Then I = [a, b].

1 For any ε > 0, [a, b] ⊂ (a− ε, b+ ε). So µ∗(I) ≤ b− a+ 2ε. Since ε is arbitrary,
µ∗(I) ≤ b− a.

2 Let {In} cover [a, b] with open intervals. There is a finite subcover for [a, b]. Order
the subcover so that consecutive intervals overlap. Then∑

N

`(Ik) = (b1 − a1) + (b2 − a2) + · · ·+ (bN − aN )

Rearrange∑
N

`(Ik) = bN − (aN − bN−1)− (aN−1 − bN−2)− · · · − (a2 − b1)− a1

≥ bN − a1 > b− a

Whence µ∗(I) = b− a.
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Outer Measure of an Interval, II

Proof (cont).

II. Let I be any bounded interval and ε > 0.
1 There is a closed interval J ⊂ I so that `(I)− ε < `(J). Then

`(I)− ε < `(J) = µ∗(J) ≤ µ∗(I) ≤ µ∗(Ī) = `(Ī) = `(I)

III. Suppose I is infinite.
1 Then for each n, there is a closed interval J ⊂ I s.t. `(J) = n

2 Thence µ∗(I) ≥ n for all n.

Aha! µ∗(I) =∞

Proposition

µ∗(Q) = 0

Proof.

Order Q as {r1, r2, . . . }. The collection {In = (rn − ε/2n, rn + ε/2n)} covers Q
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Countable Subadditivity

Theorem (µ∗ is Countably Subadditive)

Let {En} be a countable set sequence in R. Then µ∗
(⋃

n

En

)
≤
∑
n

µ∗(En)

Proof.

I. If µ∗(En) =∞ for any n, then done.
II. Let ε > 0

1 For each n find a cover {In,j}n∈N such that
∑
j∈N

`(In,j) < µ∗(En) + ε
2n

2 Then {In,j}n,j∈N covers E =
⋃

nEn.
3 Whereupon

µ∗(E) ≤
∑

n,j∈N

`(In,j) =
∑
n∈N

∑
j∈N

`(In,j)


<
∑
n∈N

[
µ∗(En) +

ε

2n

]
=
∑
n∈N

[µ∗(En)] + ε

WmCB (BauldryWC@appstate.edu) MAT 5620, Analysis II Spring, 2017 8 / 1

BauldryWC@appstate.edu
BauldryWC@appstate.edu


Intro to Lebesgue Measure Lebesgue Measure

Open Holding & Lebesgue’s Measure

Corollary

Given E ⊆ R and ε > 0, there is an open set O ⊇ E s.t.

µ∗(E) ≤ µ∗(O) ≤ µ∗(E) + ε

Definition (Carathéodory’s Condition)

A set E is Lebesgue measurable iff for every (test) set A,

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)

Let M be the collection of all Lebesgue measurable sets.

Corollary

For any A and E,

µ∗(A) = µ∗
(
(A ∩ E) ∪ (A ∩ Ec)

)
≤ µ∗(A ∩ E) + µ∗(A ∩ Ec)
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Much Ado About Nothing

Theorem

If µ∗(E) = 0, then E ∈M; i.e., E is measurable.

Proof.
Given the previous corollary, we need only show that

µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ µ∗(A)

1 Since A ∩ E ⊂ E, then µ∗(A ∩ E) ≤ µ∗(E) = 0.
2 Since A ∩ Ec ⊂ A, then µ∗(A ∩ Ec) ≤ µ∗(A).

Whence µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ 0 + µ∗(A) = µ∗(A).

Corollary

µ∗(Q) = 0 =⇒ Q ∈M
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Unions Work

Theorem

A finite union of measurable sets is measurable.

Proof.

Let E1 and E2 ∈M. Let A be a test set.
1 Use A ∩ Ec

1 as a test set for E2 which is measurable. Thence

µ∗(A ∩ Ec
1) = µ∗((A ∩ Ec

1) ∩ E2) + µ∗((A ∩ Ec
1) ∩ Ec

2)

2 Note A ∩ (E1 ∪ E2) = (A ∩ E1) ∪ (A ∩ E2 ∩ Ec
1). Whereupon

µ∗(A ∩ (E1 ∪ E2)) + µ∗(A ∩ (E1 ∪ E2)c)

= µ∗(A ∩ (E1 ∪ E2)) + µ∗(A ∩ (Ec
1 ∩ Ec

2))

≤
[
µ∗(A ∩ E1) + µ∗(A ∩ E2 ∩ Ec

1)
]

+ µ∗(A ∩ Ec
1 ∩ Ec

2)

≤ µ∗(A ∩ E1) +
[
µ∗(A ∩ Ec

1 ∩ E2) + µ∗(A ∩ Ec
1 ∩ Ec

2)
]

= µ∗(A ∩ E1) + µ∗(A ∩ Ec
1)

= µ∗(A)
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Countable Unions Work

Theorem
The countable union of measurable sets is measurable.

Proof.

Let Ek ∈M and E =
⋃

nEn. Choose a test set A.
We need to show µ∗(A ∩ E) + µ∗(A ∩ Ec) ≤ µ∗(A).

1 Set Fn =
⋃n

Ek and F =
⋃∞

Ek = E. Define G1 = E1, G2 = E2 − E1,
. . . , Gk = Ek −

⋃k−1
Ej , and G =

⋃
Gk. Then

(i) Gi ∩Gj = ∅, (i 6= j) (ii) Fn =
n⋃
Gk (iii) F = G = E

2 Test Fn with A to obtain µ∗(A) = µ∗(A ∩ Fn) + µ∗(A ∩ F c
n)

3 Test Gn with A ∩ Fn to obtain

µ∗(A ∩ Fn) = µ∗((A ∩ Fn) ∩Gn) + µ∗((A ∩ Fn) ∩Gc
n)

= µ∗(A ∩Gn) + µ∗(A ∩ Fn−1)
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Countable Unions Work, II

Proof.

4 Iterate µ∗(A ∩ Fn) = µ∗(A ∩Gn) + µ∗(A ∩ Fn−1) from 3 to have

µ∗(A ∩ Fn) =
n∑

k=1

µ∗(A ∩Gk)

5 Since Fn ⊆ F , then F c ⊆ F c
n for all n, then

µ∗(A ∩ F c
n) ≥ µ∗(A ∩ F c)

6 Whence
µ∗(A) ≥

n∑
k=1

µ∗(A ∩Gk) + µ∗(A ∩ F c)

The summation is increasing & bounded, so convergent.
7 However ∞∑

k=1

µ∗(A ∩Gk) ≥ µ∗
(
∞⋃

k=1

(A ∩Gk)

)
= µ∗(A ∩ F )

Aha! µ∗(A) ≥ µ∗(A ∩ F ) + µ∗(A ∩ F c)
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Everything Works

Corollary

The collection of Lebesgue measurable sets M is a σ-algebra.

Corollary

The Borel sets are measurable. (There are measurable, non-Borel sets.)

B(R) $ M $ P(R)

Definition (Lebesgue Measure)

Lebesgue measure µ is µ∗ restricted to M. So µ :M→ [0,∞].

Definition (Almost Everywhere)

A property P holds almost everywhere (a.e.) iff µ
(
{x : ¬P (x)}

)
= 0.
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