Intro to Lebesgue Measure Introduction

Johan Bernoulli

Euler

726

1827

Picard

Carta

Darbou

Borel

enri Lebesgue's Mathematical Genealogy (partial)

Gours

Stieltje

Spring, 2017

Poinca

► Mine

1/1

d'Alemb

Introduction to Lebesgue Measure

Prelude

There were two problems with calculus: there are functions where

• $f(x) \neq \int f'(x) dx$ (c.f., G-O #30) • $f(x) \neq \frac{d}{dx} \left[\int f(x) dx \right]$

In his 1902 dissertation, *"Intégrale, longueur, aire,"* Lebesgue wrote, "It thus seems to be natural to search for a definition of the integral which makes integration the inverse operation of differentiation in as large a range as possible."

		Euler			Weier	strass			Julia
Leil	miz	D Bernoul	li	Ca	uchy	Stieltjes			
Nev	vton	Simpson		Fourier	Riema	nn .	Lebesgue		
1650 167	5 1700	1725 1750	1775	1800	1825 1850	1875	1900 1925	1950	
	_			_		_	_		

Intro to Lebesgue Measure Introduction

What's in a Measure

Goals

The Best measure would be a real-valued set function μ that satisfies

• $\mu(I) = \text{length}(I)$ where *I* is an interval

2 μ is *translation invariant*: $\mu(x + E) = \mu(E)$ for any $x \in \mathbb{R}$

- **3** if $\{E_n\}$ is pairwise disjoint, then $\mu(\bigcup_n E_n) = \sum_n \mu(E_n)$
- dom(μ) = $\mathcal{P}(\mathbb{R})$ (the power set of \mathbb{R})

THE BAD NEWS:

$$\left. \begin{array}{c} \textit{continuum hypothesis} \\ + \textit{ axiom choice} \end{array} \right\} \implies 1, 3, \text{ and 4 are incompatible} \end{array}$$

THE PLAN:

- Give up on 4. (cf. Vitali)
- 1. and 2. are nonnegotiable
- Weaken 3., then reclaim it

Intro to Lebesgue Measure Sigma Algebras

Sigma Algebras

Definition						
Sigma Algebra of Sota						
Algebra: A collection of acts 4 is an algebra iff 4 is closed under unions						
and complements.						
σ -Algebra: An algebra of sets A is a σ -algebra iff A is closed under						
countable unions.						
Proposition						
Let \mathcal{A} be a nonempty algebra of sets of reals. Then						
• \emptyset and $\mathbb{R} \in \mathcal{A}$. $(A \in \mathcal{A} \implies A^c \in \mathcal{A}$. Then $\mathbb{R} = A \cup A^c \in \mathcal{A}$. Then $\mathbb{R}^c \in \mathcal{A}$.)						
• A is closed under intersection. ($A \cap B = [A^c \cup B^c]^c$ DeMorgan)						
Let $\mathcal A$ be a nonempty σ -algebra of sets of reals. Then						
• <i>A</i> is closed under countable intersections.						
WmCB (BauldryWC@appstate.edu) MAT 5620, Analysis II Spring, 2017 3 /						
Intro to Lebesgue Measure Sigma Algebras						
Sigma Samples						
eigina eampiee						
Examples						
• $\mathcal{A} = \{\emptyset, \mathbb{R}\}$						
2 $\mathcal{F} = \{F \subset \mathbb{R} : F \text{ is finite or } F^c \text{ is finite}\}$						
• \mathcal{F} is an algebra, the <i>co-finite algebra</i>						
2 \mathcal{F} is not a σ -algebra						
For each $r \in \mathbb{Q}$, the set $\{r\} \in \mathcal{F}$. But $igcup_{r \in \mathbb{Q}} \{r\} = \mathbb{Q} \notin \mathcal{F}$						
3 Let $\mathcal{A} = \{ \emptyset, [-1,1], (-\infty, -1) \cup (1,\infty), \mathbb{R} \}$. Is \mathcal{A} an algebra?						
• Any intersection of σ -algebras is a σ -algebra						

Outer Measure

Definition (Lebesgue Outer Measure)

Let $E \subset \mathbb{R}$. Define the *Lebesgue Outer Measure* μ^* of E to be

$$\mu^*(E) = \inf_{E \subset \bigcup I_n} \sum_n \ell(I_n),$$

the infimum of the sums of the lengths of open interval covers of E.

Intro to Lebesgue Measure Outer Measure

Proposition (Monotonicity)

If $A \subseteq B$, then $\mu^*(A) \le \mu^*(B)$.

Proposition

If *I* is an interval, then $\mu^*(I) = \ell(I)$.

WmCB (BauldryWC@appstate.edu)

MAT 5620, Analysis II

Spring, 2017 5 / 1

Intro to Lebesgue Measure Outer Measure

Outer Measure of an Interval

Proof.

- I. *I* is closed and bounded (compact). Then I = [a, b].
 - For any $\varepsilon > 0$, $[a, b] \subset (a \varepsilon, b + \varepsilon)$. So $\mu^*(I) \leq b a + 2\varepsilon$. Since ε is arbitrary, $\mu^*(I) \leq b a$.
 - 2 Let $\{I_n\}$ cover [a, b] with open intervals. There is a finite subcover for [a, b]. Order the subcover so that consecutive intervals overlap. Then

$$\sum_{N} \ell(I_k) = (b_1 - a_1) + (b_2 - a_2) + \dots + (b_N - a_N)$$

Rearrange

$$\sum_{N} \ell(I_k) = b_N - (a_N - b_{N-1}) - (a_{N-1} - b_{N-2}) - \dots - (a_2 - b_1) - a_1$$

$$\geq b_N - a_1 > b - a$$

Whence $\mu^*(I) = b - a$.

Intro to Lebesgue Measure Outer Measure

Countable Subadditivity

Let $\{E_n\}$ be a countable set sequence in \mathbb{R} . Then $\mu^*\left(\bigcup_n E_n\right) \leq \sum_n \mu^*(E_n)$

Proof.

1. If $\mu^*(E_n) = \infty$ for any n, then done. 11. Let $\varepsilon > 0$ 1 For each n find a cover $\{I_{n,j}\}_{n \in \mathbb{N}}$ such that $\sum_{j \in \mathbb{N}} \ell(I_{n,j}) < \mu^*(E_n) + \frac{\varepsilon}{2^n}$ 2 Then $\{I_{n,j}\}_{n,j \in \mathbb{N}}$ covers $E = \bigcup_n E_n$. 3 Whereupon $\mu^*(E) \leq \sum_{n,j \in \mathbb{N}} \ell(I_{n,j}) = \sum_{n \in \mathbb{N}} \left[\sum_{j \in \mathbb{N}} \ell(I_{n,j})\right]$ $< \sum_{n \in \mathbb{N}} \left[\mu^*(E_n) + \frac{\varepsilon}{2^n}\right] = \sum_{n \in \mathbb{N}} [\mu^*(E_n)] + \varepsilon$

Intro to Lebesgue Measure Lebesgue Measure

Open Holding & Lebesgue's Measure

Corollary

Given $E \subseteq \mathbb{R}$ and $\varepsilon > 0$, there is an open set $O \supseteq E$ s.t.

 $\mu^*(E) \le \mu^*(O) \le \mu^*(E) + \varepsilon$

Definition (Carathéodory's Condition)

A set E is Lebesgue measurable iff for every (test) set A,

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Let \mathfrak{M} be the collection of all Lebesgue measurable sets.

Corollary

For any A and E,

$$\mu^*(A) = \mu^*\left((A \cap E) \cup (A \cap E^c)\right) \le \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

WmCB (BauldryWC@appstate.edu)

MAT 5620, Analysis II

Spring, 2017 9 / 1

Intro to Lebesgue Measure Lebesgue Measure

Much Ado About Nothing

Theorem

If $\mu^*(E) = 0$, then $E \in \mathfrak{M}$; i.e., E is measurable.

Proof.

Given the previous corollary, we need only show that

$$\mu^*(A \cap E) + \mu^*(A \cap E^c) \le \mu^*(A)$$

Since A ∩ E ⊂ E, then μ*(A ∩ E) ≤ μ*(E) = 0.
 Since A ∩ E^c ⊂ A, then μ*(A ∩ E^c) ≤ μ*(A).

Whence $\mu^*(A \cap E) + \mu^*(A \cap E^c) \le 0 + \mu^*(A) = \mu^*(A)$.

Corollary

$$\mu^*(\mathbb{Q}) = 0 \implies \mathbb{Q} \in \mathfrak{M}$$

Intro to Lebesgue Measure Lebesgue Measure

Unions Work

Theorem

A finite union of measurable sets is measurable.

Proof.

WmCB (BauldryWC@appstate.edu)

MAT 5620, Analysis II

Intro to Lebesgue Measure Lebesgue Measure

Countable Unions Work

Theorem

The countable union of measurable sets is measurable.

Proof.

Let $E_k \in \mathfrak{M}$ and $E = \bigcup_n E_n$. Choose a test set A. We need to show $\mu^*(A \cap E) + \mu^*(A \cap E^c) \le \mu^*(A)$. Set $F_n = \bigcup^n E_k$ and $F = \bigcup^{\infty} E_k = E$. Define $G_1 = E_1, G_2 = E_2 - E_1, \dots, G_k = E_k - \bigcup^{k-1} E_j$, and $G = \bigcup G_k$. Then (i) $G_i \cap G_j = \emptyset$, $(i \ne j)$ (ii) $F_n = \bigcup^n G_k$ (iii) F = G = ETest F_n with A to obtain $\mu^*(A) = \mu^*(A \cap F_n) + \mu^*(A \cap F_n^c)$ Test G_n with $A \cap F_n$ to obtain $\mu^*(A \cap F_n) = \mu^*((A \cap F_n) \cap G_n) + \mu^*((A \cap F_n) \cap G_n^c) = \mu^*(A \cap G_n) + \mu^*(A \cap F_{n-1})$

Spring, 2017

11/1

Countable Unions Work, II

Intro to Lebesgue Measure

Lebesque Measure

Intro to Lebesgue Measure Lebesgue Measure

Everything Works

Corollary

The collection of Lebesgue measurable sets \mathfrak{M} is a σ -algebra.

Corollary

The Borel sets are measurable. (There are measurable, non-Borel sets.)

$$\mathcal{B}(\mathbb{R})\subsetneqq\mathfrak{M}\subsetneqq\mathcal{P}(\mathbb{R})$$

Definition (Lebesgue Measure)

Lebesgue measure μ is μ^* restricted to \mathfrak{M} . So $\mu: \mathfrak{M} \to [0, \infty]$.

Definition (Almost Everywhere)

A property *P* holds *almost everywhere* (a.e.) iff $\mu(\{x : \neg P(x)\}) = 0$.