
Intro to Lebesgue Measure Lebesgue Measure

The Return of Additivity
Theorem

Let {En} be a countable (finite or infinite) sequence of pairwise disjoint sets in M.
Then
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3 Subadditivity finishes the proof. 2
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Adding an Example

Example

Set E
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=

⇣
n�1
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⌘
for n = 1..1.
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NOTA BENE:
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. Hence
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=(0, 1) a.e.
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Matryoshka

Theorem

If {En} is a seq of nested, measurable sets with µ(E1) < 1, then

µ

 1\

n=1

En

!
= lim

n!1
µ(En)

Proof.

1 Set E =

1T
k=1

Ek. Set Fk = Ek � Ek+1. The Fk are pairwise disjoint.

2 Since
1S

k=1
Fk = E1�E, then µ(E1�E) =

1P
k=1

µ(Fk) =

1P
k=1

µ(Ek � Ek+1).

3 If A � B, then µ(A�B) = µ(A)� µ(B). Apply to the formula above.

4
µ(E1)� µ(E) =

1P
k=1

µ(Ek)� µ(Ek+1) = µ(E1)� lim

k!1
µ(Ek)

Since µ(E1) is finite, we’re done.
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The Cantor Set

Cantor Sets1

I. Constructing C

1 Set C0 = [0, 1]

2 Set C1 = C0 � (

1
3 ,

2
3 )

3 Set C2 = C1 � (

1
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2
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7
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4 Set C3 = C2 � (
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2
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8
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,
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5 Let C =

T
Ci

II. Properties of C
1

µ(C0) = 1, µ(C1) = 2/3,
µ(C2) = 4/9, µ(C3) = 8/27, . . . So
µ(Cn) =

2
3µ(Cn�1) =

2n

3n Whence
µ(C) = 0.

2
C is uncountable

3
C is perfect

4
C is nowhere dense

5
C is compact

6
C is totally disconnected

7
(8i) @Ci ⇢ C

8
(8i) 1

4 /2 @Ci, but 1
4 2 C

1Cantor gave the set in a footnote to show “perfect” 6⇢ “everywhere dense”.
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Not So Strange After All

Theorem
Let E ✓ R and let " > 0. TFAE:

1 E is measurable
2 There is an open set O � E s.t. µ⇤

(O � E) < "
3 There is a closed set F ⇢ E s.t. µ⇤

(E � F ) < "

Proposition
Let S and T be measurable subsets of R. Then

µ(S [ T ) + µ(S \ T ) = µ(S) + µ(T )
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Functionally Measurable

Theorem (Measurability Conditions for Functions)
Let f :D ! R1 for some D 2 M. TFAE

1 For each r 2 R, the set f�1
�
(r,1)

�
is measurable.

2 For each r 2 R, the set f�1
�
[r,1)

�
is measurable.

3 For each r 2 R, the set f�1
�
(�1, r)

�
is measurable.

4 For each r 2 R, the set f�1
�
(�1, r]

�
is measurable.

Proof.
1 ) 2: {x | f(x) � r} =

T
n

{x | f(x) > r � 1/n}

2 ) 3: {x | f(x) < r} = D � {x | f(x) � r}

3 ) 4: {x | f(x)  r} =

T
n

{x | f(x) < r + 1/n}

4 ) 1: {x | f(x) > r} = D � {x | f(x)  r}
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The Measurably Functional

Corollary

If f satisfies any measurability condition, then {x | f(x) = r} is measurable for each r.

Definition (Measurable Function)

If a function f :D ! R1 has measurable domain D and satisfies any of the
measurability conditions, then f is measurable.

Definition

Step function: � : [a, b] ! R1 is a step function if there is a partition a = x0

< x1 < · · · < xn = b s.t. � is constant on each interval Ik = (xk�1, xk), then

�(x) =

nX

k=1

ak�Ik (x)

Simple function: A function  with range {a1, a2, . . . , an} where each set  �1
(ak) is

measurable is a simple function.
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Simply Stepping

Proposition

Step functions and simple functions are measurable

Theorem (Algebra of Measurable Functions)

Let f and g be measurable on a common domain D, and let c 2 R. Then

1
f + c

2
c · f

3
f ± g

4
f

2

5
f · g

are all measurable.

Proof.
• X
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Sequencing

Theorem

Let {fn} be a sequence of measurable functions on a common domain D. Then

1
sup {f1, . . . , fn}

2
inf {f1, . . . , fn}

3
sup

n!1
fn

4
inf

n!1
fn

5
lim sup

n!1
fn

6
lim inf

n!1
fn

are all measurable.

Proof.

1 Set f = {f1, . . . , fn}. Then {f(x) > r} =

n[

k=1

{fk(x) > r}.

3 Set F = supn fn. Then {F (x) > r} =

1[

k=1

{fk(x) > r}.

5 Set � = lim supn fn. Then lim sup

n!1
fn = inf

n


sup

k�n
fk

�
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Zeroing

Theorem
If f is measurable and f = g a.e., then g is measurable.

Definition (Converence Almost Everywhere)

A sequence {fn} converges to f almost everywhere, written as fn ! f a.e., iff
µ

⇣
{x :fn(x) 6! f(x)}

⌘
= 0.

Theorem

Let f : [a, b] ! R. Then f is measurable iff there is a seq. of simple functions { n}
converging to f a.e.
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A Simple Proof

Proof.
()) Wolog f � 0.

1 Define A
n,k

=

�
x
��k�1

2n  f(x) < k

2n

 
for k = 1..(n · 2n) and

A0,n = [a, b]�
n2n[

k=1

A
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2 Set  
n
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n2nX
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3 Then
1
 1   2  · · ·

2 If 0  f(x)  n, then |f �  n| < 2

�n

3
limn  = f a.e.

(() X

Maple Example
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Integration

We began by looking at two examples of integration problems.
The Riemann integral over [0, 1] of a function with infinitely many
discontinuities didn’t exist even though the points of discontinuity formed
a set of measure zero.
(The points of discontinuity formed a dense set in [0, 1].)
The limit of a sequence of Riemann integrable functions did not equal the
integral of the limit function of the sequence.
(Each function had area 1/2, but the limit of the sequence was the zero
function.)

We will look at Riemann integration, then Riemann-Stieltjes integration, and
last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy, Gauge, Perron,
etc. See the list given in the “See also” section of Integrals on Mathworld.
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