Intro to Lebesgue Measure

The Return of Additivity

Theorem

Lebesgue Measure

Let{E,} be a countable (finite or infinite) sequence of pairwise disjoint sets in N
Then

() T

k=1

Proof.

I. n is finite.

Q@ Forn=1,v

Q@ (U/_,Ex)NE,=E,and (Uy_, Bx) N ES = U;Z, Ex

© 1(Up_ B) = u([Uiy Bi] N Ew) + u([Uiy Bl N E)

= w(En) + p(UpZ1 Bx) = p(En) + S hzi w(Ex) = Sp_, 1(Ex)

Il. n is infinite.

Qo Ui Bx CUp—y B = “(UZ:1 Ek) =D 1 H(Ek) < /‘( 1 Ek)

@ Abounded & increasing sum converges. Thus 372, u(Ex) < p(Ure, Ex)
@ Subadditivity finishes the proof.
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Intro to Lebesgue Measure

Adding an Example

Lebesgue Measure

Set E, (nl,n+1)forn—1oo

@ The E, are pairwise disjoint.

WEn) = UEn) = iy — " =

o 1
’u< > n— 1,u nzzzl n(nt1)
Whence M( U En)
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NoTA BENE: ) E,=(0,1) — {5,2,3,...}. Hence UE =(0,1) a.e
n=1
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Matryoshka

Theorem
If{E,} is a seq of nested, measurable sets with ;i(E1) < oo, then

u(ﬂ En> = lim pu(En)

n=1

Proof.

@ Set E= ) Ei. Set F, = E, — Ex1. The Fy, are pairwise disjoint.

k=1
00

@ Since | F, = E1—E, then u(E1—E) =Y u(Fr) = w(Ex — Ert1).
k=1 k=1 k=1

@ If AD B, then u(A — B) = u(A) — u(B). Apply to the formula above.
Q wEr) —p(E) = Z n(Ey) —

p(Br1) = p(Er) — lim p(Ey)

Since p(Eh) is finite, we're done.

WmCB (BauldryWC@appstate.edu) MAT 5620, Analysis Il Spring, 2017

Intro to Lebesgue Measure Lebesgue Measure

The Cantor Set

Cantor Sets’
I. Constructing C

Q@ SetCo =[0,1]

Q SetCi=Co— (3, 2)

Q SetC: = Ci— (3 32) — (37, 3%)

@ SetCs = Co— (3r,3%) — (Fro39) — (33, ) — (3. )
e Let C = ﬂCZ

Il. Properties of C

Q 1(Co) =1, u(Ch) = 2/3,
u(C2) =4/9, u(Cs) = 8/27
u(C ): 3M(Cn 1) =% Whence
u(C) =

Q Cis uncountable
© C is perfect

© C is nowhere dense

@ C is compact

© C is totally disconnected
@ (vi)oCc;cC

Q (vi)l¢ac,butlec

17/52

1Cantor gave the set in a footnote to show “perfect” ¢ “everywhere dense”.
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Not So Strange After All

Theorem

LetE CR andlete > 0. TFAE:
@ FE is measurable
@ ThereisanopensetO D E s.t. u*(O—FE) <e
© ThereisaclosedsetF C E s.t. y*(E—F) <e

Proposition
Let S andT be measurable subsets of R. Then

p(SUT) +pu(SNT) = p(S) + u(T)
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Functionally Measurable

Theorem (Measurability Conditions for Functions)

Let f:D — R, forsome D € 9. TFAE
@ Foreachr € R, the set f~*((r,00)) is measurable.
@ Foreachr € R, the set f~!([r,c0)) is measurable.
© Foreachr € R, the set f~*((—
© Foreachr c R, theset f~1((—

oo, 1)) is measurable.
oo, r]) is measurable.

Proof.

1=2: {z]f(x) 2r} =N {z|f(x) >r—1/n}

2=3: {z|f(x)<r}=D—A{z]| f(x) >r}

3= 4 {z| f(x) <r} =N {z|f(x) <r+1/n}
(z) >

4=1: {z|f(zx)>r} =D —{z| f(z) <r} O

WmCB (BauldryWC@appstate.edu) MAT 5620, Analysis Il Spring, 2017 20/52



Intro to Lebesgue Measure Lebesgue Measure

The Measurably Functional

Corollary
If f satisfies any measurability condition, then {x | f(x) = r} is measurable for each r. J

Definition (Measurable Function)

If a function f: D — R, has measurable domain D and satisfies any of the
measurability conditions, then f is measurable.

Definition

Step function: ¢:[a,b] — R is a step function if there is a partition a = x¢
<z <--- <z, =bs.t ¢isconstant on each interval I, = (zx_1,xx), then

$(z) =Y arXy, (@)

Simple function: A function + with range {a1, as, ..., a,} Where each set v *(az) is
measurable is a simple function.
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Intro to Lebesgue Measure Lebesgue Measure

Simply Stepping

Proposition

Step functions and simple functions are measurable

Theorem (Algebra of Measurable Functions)
Let f and g be measurable on a common domain D, and let c € R. Then

Q /+c Q ftyg Qg

Qc s Q

are all measurable. )
Proof.

o Vv ]
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Sequencing

Theorem
Let{f.} be a sequence of measurable functions on a common domain D. Then

0 Sup{fl;---,fn} e sup fn e limsupfn
n— oo n— oo

© inf {f1,.... fn} Q inf f, Q liminf f,
n—oo n—oo

are all measurable.

Proof.

@ Setf={f,...,fu}. Then {f(z) > r} = | J{fx(z) > r}.
@ Set F =sup,, fn. Then {F(z) > r} = G{fk(x) > r}.

@ Set ® = limsup,, f,. Then limsup f,, = inf {sup fk;}
n [k>n

_>
n O D
v
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Intro to Lebesgue Measure Lebesgue Measure
Zeroing
Theorem
If f is measurable and f = g a.e., then g is measurable. J

Definition (Converence Almost Everywhere)

A sequence {f.} converges to f almost everywhere, written as f, — f a.e., iff

u({z: fal@) 4 F(@)}) = 0.

Theorem

Let f:[a,b] — R. Then f is measurable iff there is a seq. of simple functions {,}
converging to f a.e.

WmCB (BauldryWC@appstate.edu) MAT 5620, Analysis Il Spring, 2017 24 /52



Intro to Lebesgue Measure Lebesgue Measure

A Simple Proof

Proof.
(=) Wolog f > 0.
@ Define 4, = {z |52 < f(z) < 55 } for k =1..(n - 2") and

n2"™

Apn = [a,8] = | Anx
k=1

n2™

k—1
Q Set ¢, (z) =nXy,, (z)+ Z 5T Xa, k()
k=1
© Then
Q Y1 <<
Q If0< f(x) <nm,then|f —,| <277
© lim,v = f a.e.
(<) vV O
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Intro to Lebesgue Measure Lebesgue Integration
Integration

We began by looking at two examples of integration problems.

@ The Riemann integral over [0, 1] of a function with infinitely many
discontinuities didn’t exist even though the points of discontinuity formed
a set of measure zero.
(The points of discontinuity formed a dense set in [0, 1].)

@ The limit of a sequence of Riemann integrable functions did not equal the
integral of the limit function of the sequence.
(Each function had area />, but the limit of the sequence was the zero
function.)

We will look at Riemann integration, then Riemann-Stieltjes integration, and
last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy, Gauge, Perron,
etc. See the list given in the “See also” section of /nfegrals on Mathworld.
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