The Greening of Multiple Integrals

Wm C Bauldry

March, 2017

Double Integrals

Theorem (11.5 Iterated Integrals)

Let f be bounded and integrable on $S=[a, b] \times[c, d]$. Assume the integrals $A(y)=\int_{a}^{b} f(x, y) d x$ exist for each fixed y. Assume $\int_{c}^{d} A(y) d y$ exists. Then

$$
\iint_{S} f d x d y=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

Examples

1. $\iint_{S} x \sin (y) d x d y$ with

$$
S=[0,2] \times[0, \pi / 2]
$$

2. $\iint_{R}\left[\frac{x}{y}+\frac{y}{x}\right] d x d y$ with $R=[1,2] \times[1,2]$
3. $\iint_{S} x y e^{x^{2} y} d A$ with

$$
S=[0,1] \times[0,2]
$$

4. $\iint_{R} \frac{x y}{x^{2}+1} d A$ with
$R=[0,1] \times[1,3]$

Multiple Integrals

Theorem (11.6 Integrability of Continuous Functions - Fubini)

If $f: S \rightarrow \mathbb{R}$ is continuous on $S=[a, b] \times[c, d]$, then f is integrable on S. And

$$
\iint_{S} f d A=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
$$

Definition (Content Zero)

A bounded set A has content zero iff A can be covered by a set of rectangles with total area $<\varepsilon$.

Theorem (11.7 Integrability of Almost Continuous Functions)

If $f: S \rightarrow \mathbb{R}$ is bounded on $S=[a, b] \times[c, d]$ and continuous on S except on a set on content zero, then $\iint_{S} f d A$ exists.

Multiple Integrals

Definition (Integrals over Nonrectangular Regions)

Let S be a bounded region enclosed in a rectangle R. Let $f: S \rightarrow \mathbb{R}$ be bounded. Extend to f to R by

$$
\bar{f}(x, y)= \begin{cases}f(x, y) & x \in S \\ 0 & x \in R-S\end{cases}
$$

Define

$$
\iint_{S} f d A=\iint_{R} \bar{f} d A
$$

Theorem

The graph $\{(t, \phi(t))\}$ of a continuous function ϕ has content zero.

Theorem (11.9 Nonrectangular Regions)

Let $f: S \rightarrow \mathbb{R}$ be continuous on $S=\left\{a \leq x \leq b\right.$ and $\left.\phi_{1}(x) \leq y \leq \phi_{2}(x)\right\}$. Then

$$
\iint_{S} f d A=\int_{a}^{b}\left[\int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y\right] d x
$$

Multiple Integrals

Examples

$$
\begin{aligned}
& \text { 1. } \int_{0}^{1} \int_{0}^{x}(3-x-y) d y d x \\
& \text { (Do ways) } \\
& \text { 2. } \int_{0}^{1} \int_{\sqrt{y}}^{1} d x d y \\
& (\text { Do } 2 \text { ways }) \\
& \text { 3. } \int_{0}^{1} \int_{0}^{x} \frac{\sin (x)}{x} d y d x \\
& \text { (Try to do } 2 \text { ways) }
\end{aligned}
$$

4. $\int_{-\pi / 3}^{\pi / 3} \int_{0}^{\sec (t)} 3 \cos (t) d u d t$

$$
\text { 5. } \int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} 3 y d x d y
$$

6. Find the volume of the region that lies under the paraboloid $z=x^{2}+y^{2}$ and above the triangle enclosed by the lines $x=0, y=x$, and $x+y=2$ in the $x y$-plane.

§11.19 Green's Theorem in the Plane

Theorem (Green's Theorem [v1.0])

Let P \& Q be scalar fields continuously differentiable on an open set $S \subset \mathbb{R}^{2}$ that contains a piecewise-smooth Jordan curve C and R, the interior of C.
Then

$$
\oint_{C} P d x+Q d y=\iint_{R}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x d y
$$

Note

$$
\oint_{C} Q d y=\iint_{R} \frac{\partial Q}{\partial x} d x d y \quad \text { and } \quad \oint_{C} P d x=-\iint_{R} \frac{\partial P}{\partial y} d x d y
$$

Example (Planimeter)

$$
\operatorname{Area}(R)=\oint_{C}\left(-\frac{1}{2} y\right) d x+\left(\frac{1}{2} x\right) d y=\iint_{R} d A
$$

Green's Theorem - Simplified Proof

Proof. [One direction of a special case.]

Suppose R is an " x-simple" region and let $C=\partial R$; i.e., for some continuous $\phi_{1} \& \phi_{2}$, we have $R \cup C=\left\{(a \leq x \leq b) \wedge\left(\phi_{1}(x) \leq y \leq \phi_{2}(x)\right)\right\}$. Then

$$
\begin{equation*}
\oint_{C} P d x=\int_{a}^{b} P\left(x, \phi_{1}(x)\right) d x-\int_{a}^{b} P\left(x, \phi_{2}(x)\right) d x \tag{1}
\end{equation*}
$$

By the FToC

$$
\begin{align*}
\iint_{R} \frac{\partial P}{\partial y} d A & =\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} \frac{\partial P}{\partial y} d y d x \\
& =\int_{a}^{b} P\left(x, \phi_{2}(x)\right) d x-\int_{a}^{b} P\left(x, \phi_{1}(x)\right) d x \tag{2}
\end{align*}
$$

Combine (1) and (2) to get

$$
\oint_{C} P d x=-\iint_{R} \frac{\partial P}{\partial y} d A
$$

Green's Theorem - Example

Example

Find the area of the unit circle using Green's Theorem.

