Outline

§10.2

Definition 1 (Path). $\alpha:[a, b] \rightarrow \mathbb{R}^{n}$

- Continuous Path: α is continuous
- Smooth Path: α is continuously differentiable
- Piecewise Smooth Path: $[a, b]=\cup\left[a_{k}, b_{k}\right]$ and α is smooth on each $\left[a_{k}, b_{k}\right]$

Eg. spacecurve
Definition 2 (Line Integral).

- α : piecewise smooth path
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$: vector field bounded on $\alpha([a, b])$: graph of α

$$
\int f \cdot d \alpha=\int_{a}^{b} f(\alpha(t)) \cdot \alpha^{\prime}(t) d t
$$

($a \cdot b$ is the inner/dot product)
§10.3
If $\vec{a}=\alpha(a)=\vec{b}=\alpha(b)$, then the path is closed.
For a closed, piecewise smooth path α, write $\oint f \cdot d \alpha$
For $f=\left(f_{1}, \ldots, f_{n}\right)$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$:

$$
\int f \cdot d \alpha=\sum_{k=1}^{n} \int_{a}^{b} f_{k}(\alpha(t)) \cdot \alpha_{k}^{\prime}(t) d t
$$

For \mathbb{R}^{2} with $\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t)\right)$: let C be the path α and $x=\alpha_{1}(t), y=\alpha_{2}(t)$. Then

$$
\int_{C} f \cdot d \alpha=\int_{C} f_{1}(x, y) d x+f_{2}(x, y) d y
$$

E.g. Evaluate $\oint_{C} f \cdot d \alpha$ where $f(x, y)=\left(y^{2}, x\right)$ and

- C is given by $C_{1}=$ the line segment from $(-5,-3)$ to $(0,2)$
- C is given by $C_{2}=$ the arc of parabola $x+y^{2}=4$ from $(-5,-3)$ to $(0,2)$

1. $C_{1}: \alpha(t)=[-5,-3] \cdot(1-t)+[0,2] \cdot t$ or $x=5 t-5$ and $y=5 t-3$ for $t \in[0,1]$. So

$$
\int_{C_{1}} y^{2} d x+x d y=\int_{0}^{1}(5 t-3)^{2} 5 d t+(5 t-5) 5 d t=-\frac{5}{6}
$$

2. Evaluate $\int_{C_{1}} f(\alpha) \cdot \alpha^{\prime} d t$
3. $C_{2}: \alpha(t)=\left[4-y^{2}, y\right]$ for $y \in[-3,2]$. So

$$
\int_{C_{2}} y^{2} d x+x d y=\int_{-3}^{2} y^{2}(-2 y) d y+\left(4-y^{2}\right) d y=40 \frac{5}{6}
$$

§10.4
Linearity

1. $\int c f \cdot d \alpha$
2. $\int(f+g) \cdot d \alpha$

Additivity

1. $\int_{C_{1}} f \cdot d \alpha+\int_{C_{2}} f \cdot d \alpha$

Definition 3. α and β are equivalent piecewise smooth paths iff...
Theorem 1 (Change of Parameter). α and β : equivalent piecewise smooth paths \Longrightarrow

$$
\int_{C} f \cdot d \alpha=\int_{C} f \cdot d \beta
$$

E.g. \#12b p 328. $\oint_{C} y d x+z d y+x d z$ for C is $\left\{x^{2}+y^{2}=1\right\} \cap\{z=x y\}$ $f(x, y, z)=(y, z, x)$ and $\alpha(x, y, z)=(x, y, z)$

