Outline

§10.2

Definition 1 (Path). $\alpha : [a, b] \to \mathbb{R}^n$

- Continuous Path: α is continuous
- Smooth Path: α is continuously differentiable
- Piecewise Smooth Path: $[a, b] = \cup [a_k, b_k]$ and α is smooth on each $[a_k, b_k]$

Eg. spacecurve

Definition 2 (Line Integral).

- α : piecewise smooth path
- $f : \mathbb{R}^n \to \mathbb{R}^m$: vector field bounded on $\alpha([a, b])$: graph of α

$$\int f \cdot d\alpha = \int_{a}^{b} f(\alpha(t)) \cdot \alpha'(t) dt$$

 $(a \cdot b \text{ is the inner/dot product})$

§10.3 If $\vec{a} = \alpha(a) = \vec{b} = \alpha(b)$, then the path is **closed**. For a closed, piecewise smooth path α , write $\oint f \cdot d\alpha$

For $f = (f_1, \ldots, f_n)$ and $\alpha = (\alpha_1, \ldots, \alpha_n)$:

$$\int f \cdot d\alpha = \sum_{k=1}^{n} \int_{a}^{b} f_k(\alpha(t)) \cdot \alpha'_k(t) dt$$

For \mathbb{R}^2 with $\alpha(t) = (\alpha_1(t), \alpha_2(t))$: let *C* be the path α and $x = \alpha_1(t), y = \alpha_2(t)$. Then

$$\int_C f \cdot d\alpha = \int_C f_1(x, y) \, dx + f_2(x, y) \, dy$$

E.g. Evaluate $\oint_C f \cdot d\alpha$ where $f(x, y) = (y^2, x)$ and

- *C* is given by C_1 = the line segment from (-5, -3) to (0, 2)
- *C* is given by C_2 = the arc of parabola $x + y^2 = 4$ from (-5, -3) to (0, 2)
- 1. $C_1 : \alpha(t) = [-5, -3] \cdot (1-t) + [0, 2] \cdot t$ or x = 5t 5 and y = 5t 3 for $t \in [0, 1]$. So

$$\int_{C_1} y^2 \, dx + x \, dy = \int_0^1 (5t - 3)^2 \, 5 \, dt + (5t - 5) \, 5 \, dt = -\frac{5}{6}$$

2. Evaluate $\int_{C_1} f(\alpha) \cdot \alpha' dt$ 3. $C_2 : \alpha(t) = [4 - y^2, y]$ for $y \in [-3, 2]$. So $\int_{C_2} y^2 dx + x dy = \int_{-3}^2 y^2 (-2y) dy + (4 - y^2) dy = 40 \frac{5}{6}$ §10.4 Linearity

1.
$$\int cf \cdot d\alpha$$

2.
$$\int (f+g) \cdot d\alpha$$

Additivity

1.
$$\int_{C_1} f \cdot d\alpha + \int_{C_2} f \cdot d\alpha$$

Definition 3. α and β are equivalent piecewise smooth paths *iff*...

Theorem 1 (Change of Parameter). α and β : equivalent piecewise smooth paths \implies

$$\int_C f \cdot d\alpha = \int_C f \cdot d\beta$$

E.g. #12b p 328. $\oint_C y \, dx + z \, dy + x \, dz$ for *C* is $\{x^2 + y^2 = 1\} \cap \{z = xy\}$ f(x, y, z) = (y, z, x) and $\alpha(x, y, z) = (x, y, z)$

