Mat 5620	Midterm	NAME:
Spring '17		Email:

Work quickly and carefully, following directions closely. Answer all questions completely.

1. Prove or disprove: If $\vec{r}: [a,b] \to \mathbb{R}^n$ is integrable, then

$$\left\|\int_{a}^{b} \vec{r}(t) dt\right\| \leq \int_{a}^{b} \|\vec{r}(t)\| dt$$

2. Prove: If C is a smooth rectifiable curve, and f is continuous everywhere, then

$$\left| \int_{C} f \, ds \, \right| \leq \operatorname{length}(C) \cdot \max_{\vec{x} \in C} |f(\vec{x})|$$

3. Let \mathscr{S} be the surface consisting of the portion of the paraboloid $\Omega = x^2 + y^2$ lying below the plane z = 1. Suppose $F(x,y) = -2y\mathbf{i} + 2x\mathbf{j} + e^z\mathbf{k}$. Use Stokes' theorem to calculate the flux $\iint_{\mathscr{S}} \nabla \times F \cdot \vec{n} \, dS$.

4. Fill in the chart with 'Yes' or 'No' and justify your answers¹:

Sequence	Pointwise	Uniform	In Mean
$f_n(x) = \chi_{[n,n+1]}(x)$			
$g_n(x) = \frac{1}{n} \cdot \boldsymbol{\chi}_{[0,n]}(x)$			
$h_n(x) = n \cdot \chi_{[1/n,2/n]}(x)$			
$r_n(x) = \chi_{[j/2^k, (j+1)/2^k]}(x)$ $(n = 2^k + j, \ j = 02^k - 1)$			