Vector Calculus

Vector Space Axioms

A set $\mathcal{V}=\{\vec{v}\}$ with addition + and scalar multiplication \cdot with scalars from a field F is a vector space over F when
(1) $\langle\mathcal{V},+\rangle$ is an Abelian group.
(2) - scalar multiplication distributes over vector addition

- scalar addition distributes over scalar multiplication
- multiplication of scalars 'associates' with scalar multiplication

Recall:

- The norm (magnitude) of a vector \vec{u} is $\|\vec{u}\|=\sqrt{\sum u_{i}^{2}}$
- The direction vector of \vec{u} is $(1 /\|\vec{u}\|) \cdot \vec{u}$

Definition (Dot Product in \mathbb{R}^{n} over \mathbb{R})

$$
\text { Dot Product } \quad \vec{u} \cdot \vec{v}=\sum u_{i} \cdot v_{i}=\|\vec{u}\|\|\vec{v}\| \cos (\angle \overline{u v})
$$

Dot Product

Proposition (Dot Product Properties)

Let \vec{u} and \vec{v} be in \mathbb{R}^{n}. Then
(1) $\angle \overline{u v}=\cos ^{-1}\left[\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}\right]$ angle between vectors
(2) $|\vec{u} \cdot \vec{v}| \leq\|\vec{u}\|\|\vec{v}\| \quad$ Cauchy-Bunyakovsky-Schwarz inequality
(3) $\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\| \quad$ Triangle inequality; (cf. Minkowski's inequality)
(9) $\operatorname{proj}_{\vec{v}}(\vec{u})=\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} \quad$ (orthogonal) projection of \vec{u} onto \vec{v}

