Vector Calculus

Vector Calculus

Vector Space Axioms

A set $\mathcal{V}=\{\vec{v}\}$ with addition + and scalar multiplication \cdot with scalars from a field F is a *vector space over* F when

- \bigcirc $\langle \mathcal{V}, + \rangle$ is an Abelian group.
- scalar multiplication distributes over vector addition
 - scalar addition distributes over scalar multiplication
 - multiplication of scalars 'associates' with scalar multiplication

Recall:

- The *norm* (magnitude) of a vector \vec{u} is $\|\vec{u}\| = \sqrt{\sum u_i^2}$
- The *direction vector* of \vec{u} is $(1/\|\vec{u}\|) \cdot \vec{u}$

Definition (Dot Product in \mathbb{R}^n over \mathbb{R})

Dot Product $\vec{u} \cdot \vec{v} = \sum u_i \cdot v_i = ||\vec{u}|| \, ||\vec{v}|| \, \cos(\angle \overline{uv})$

MAT 5620: 3

WmCB (BauldryWC@appstate.edu)

MAT 5620, Analysis II

Spring, 2017 3 / 39

Vector Calculus

Dot Product

Proposition (Dot Product Properties)

Let \vec{u} and \vec{v} be in \mathbb{R}^n . Then

angle between vectors

- $| ec{u} \cdot ec{v} | \leq \| ec{u} \| \, \| ec{v} \|$ Cauchy-Bunyakovsky-Schwarz inequality
- \P $\operatorname{proj}_{\vec{v}}(\vec{u}) = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$ (orthogonal) projection of \vec{u} onto \vec{v}

MAT 5620: 4