Vector Calculus ## **Vector Calculus** ## **Vector Space Axioms** A set $\mathcal{V}=\{\vec{v}\}$ with addition + and scalar multiplication \cdot with scalars from a field F is a *vector space over* F when - \bigcirc $\langle \mathcal{V}, + \rangle$ is an Abelian group. - scalar multiplication distributes over vector addition - scalar addition distributes over scalar multiplication - multiplication of scalars 'associates' with scalar multiplication ### Recall: - The *norm* (magnitude) of a vector \vec{u} is $\|\vec{u}\| = \sqrt{\sum u_i^2}$ - The *direction vector* of \vec{u} is $(1/\|\vec{u}\|) \cdot \vec{u}$ ### Definition (Dot Product in \mathbb{R}^n over \mathbb{R}) Dot Product $\vec{u} \cdot \vec{v} = \sum u_i \cdot v_i = ||\vec{u}|| \, ||\vec{v}|| \, \cos(\angle \overline{uv})$ MAT 5620: 3 WmCB (BauldryWC@appstate.edu) MAT 5620, Analysis II Spring, 2017 3 / 39 Vector Calculus # **Dot Product** ### **Proposition (Dot Product Properties)** Let \vec{u} and \vec{v} be in \mathbb{R}^n . Then angle between vectors - $| ec{u} \cdot ec{v} | \leq \| ec{u} \| \, \| ec{v} \|$ Cauchy-Bunyakovsky-Schwarz inequality - \P $\operatorname{proj}_{\vec{v}}(\vec{u}) = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$ (orthogonal) projection of \vec{u} onto \vec{v} MAT 5620: 4