MAT 5620	Final Exam
FALL ${ }^{\prime} 07$	

1. Prove: If \vec{u} and \vec{v} are vectors in \mathbb{R}^{n}, then $\vec{u} \cdot \vec{v} \leq\|\vec{u}\|\|\vec{v}\|$.
2. What is the smallest positive value of a for which the cycloid $f(t)=[a(t-\sin (t)), a(1-\cos (t))]$ fails to have a tangent slope for $t=\pi$.
3. Suppose that the curve C is parametrized by $\gamma(t)=[x(t), y(t)]$ for $t \in \mathbb{R}$. If $d x / d t$ is continuous and nonzero on $[a, b]$, then C can be written as $y=F(x)$ on the interval from $x(a)$ to $x(b)$.
4. Show that the function $f(x, y)=\frac{1}{x+y}$ is not uniformly continuous on $D=(0,1) \times(0,1)$.
5. Let $f(x, y)=\left\{\begin{array}{ll}\left(x^{2}+y^{2}\right) \cdot \sin \left(1 / \sqrt{x^{2}+y^{2}}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array}\right.$.
(a) Determine whether f is differentiable at $(0,0)$.
(b) If f_{x} or f_{y} exist at $(0,0)$, is either (or both) continuous at $(0,0)$?
6. Suppose that $x(t)$ and $y(t)$ are differentiable for all t. Calculate $\frac{d^{2} z}{d t^{2}}$ where $z=f(x, y)$ assuming all necessary derivatives exist.
7. Prove: If there is any set $E \in \mathfrak{M}$ that has $m(E)<\infty$, then the measure of the empty set must be 0 .
8. Define $D(x)=\left\{\begin{array}{ll}\frac{1}{q} & x=\frac{p}{q},(p, q)=1 \\ 0 & \text { otherwise }\end{array}\right.$.
(a) Show that D is continuous a.e.
(b) Show that the Riemann integral $\int_{0}^{1} D(x) d x$ is equal to the Lebesgue integral $\int_{[0,1]} D$ and that both are 0 .
9. Evaluate $\int_{0}^{b} x d(x-\lfloor x\rfloor)$ where $b>0$.
10. Prove: Suppose that f is a measurable function and E is a set with $m(E)<\infty$. If $a \leq f(x) \leq b$ a.e. on E, then $a \cdot m(E) \leq \int_{E} f \leq b \cdot m(E)$.
