Mat 5620	Final Exam	NAME:
FALL '07		ASU EMAIL ID #:

- 1. Prove: If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then $\vec{u} \cdot \vec{v} \leq \|\vec{u}\| \|\vec{v}\|$.
- 2. What is the smallest positive value of a for which the cycloid $f(t) = [a(t \sin(t)), a(1 \cos(t))]$ fails to have a tangent slope for $t = \pi$.
- 3. Suppose that the curve C is parametrized by $\gamma(t) = [x(t), y(t)]$ for $t \in \mathbb{R}$. If dx/dt is continuous and nonzero on [a, b], then C can be written as y = F(x) on the interval from x(a) to x(b).
- 4. Show that the function $f(x,y) = \frac{1}{x+y}$ is not uniformly continuous on $D = (0,1) \times (0,1)$.

5. Let
$$f(x,y) = \begin{cases} (x^2 + y^2) \cdot \sin(1/\sqrt{x^2 + y^2}) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{otherwise} \end{cases}$$

- (a) Determine whether f is differentiable at (0, 0).
- (b) If f_x or f_y exist at (0,0), is either (or both) continuous at (0,0)?
- 6. Suppose that x(t) and y(t) are differentiable for all t. Calculate $\frac{d^2z}{dt^2}$ where z = f(x, y) assuming all necessary derivatives exist.
- 7. Prove: If there is any set $E \in \mathfrak{M}$ that has $m(E) < \infty$, then the measure of the empty set must be 0.
- 8. Define $D(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q}, (p,q) = 1\\ 0 & \text{otherwise} \end{cases}$.
 - (a) Show that D is continuous a.e.

(b) Show that the Riemann integral
$$\int_0^1 D(x) dx$$
 is equal to the Lebesgue integral $\int_{[0,1]} D$ and that both are 0.

9. Evaluate
$$\int_0^b x d(x - \lfloor x \rfloor)$$
 where $b > 0$.

10. Prove: Suppose that f is a measurable function and E is a set with $m(E) < \infty$. If $a \le f(x) \le b$ a.e. on E, then $a \cdot m(E) \le \int_E f \le b \cdot m(E)$.