MAT 5620. Analysis II.
 Notes on Measure Theory.

Wm C Bauldry

BauldryWC@appstate.edu

Autumn, 2006

Henri Léon Lebesgue (1875-1941)

Table of Contents

0. "Riemann, We Have a

Problem."

1. Toward a Unit of Measure
1.1 Set Algebras

- Sidebar: Borel Sets
1.2 Countably Additive Measures
1.3 Outer Measure
1.4 Measured Exercises

2. Lebesgue Measure
2.1 Measurable Sets
2.2 Measure Zero

- Sidebar: \mathbb{Q} Is Small
2.3 Measurable Functions
2.4 Functionally Measured Exercises

3. Integration
3.1 Riemann Integral
3.2 Riemann-Stieltjes Integral
3.3 Lebesgue Integral
3.4 Convergence Theorems

- Sidebar: Littlewood's Three Principles
3.5 Integrated Exercises

4. References

"Riemann, We Have a Problem."

There are problems with Riemann integration.

1. Define Dirichlet's function (1829) $D(x)=\left\{\begin{array}{ll}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{array}\right.$.

Then $\int_{[0,1]} D(x) d x$ does not exist.
2. Set $f_{n}(x)=\left\{\begin{array}{ll}2 n^{2} x & 0 \leq x<\frac{1}{2 n} \\ 2 n(1-n x) & \frac{1}{2 n} \leq x<\frac{1}{n} \\ 0 & \text { otherwise }\end{array}\right.$. Then

$$
\int_{[0,1]} \lim _{n \rightarrow \infty} f_{n}(x) d x \neq \lim _{n \rightarrow \infty} \int_{[0,1]} f_{n}(x) d x .
$$

"Riemann, We Have a Problem."

There are problems with Riemann integration.

1. Define Dirichlet's function (1829) $D(x)=\left\{\begin{array}{ll}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{array}\right.$. Then $\int_{[0,1]} D(x) d x$ does not exist.
2. Set $f_{n}(x)=\left\{\begin{array}{ll}2 n^{2} x & 0 \leq x<\frac{1}{2 n} \\ 2 n(1-n x) & \frac{1}{2 n} \leq x<\frac{1}{n} \\ 0 & \text { otherwise }\end{array}\right.$. Then

$$
\int_{[0,1]} \lim _{n \rightarrow \infty} f_{n}(x) d x \neq \lim _{n \rightarrow \infty} \int_{[0,1]} f_{n}(x) d x .
$$

Enter Henri Lebesgue in 1902.

A Bad Sequence of Functions

Example

- Find $\int f_{n}, \lim _{n} \int f_{n}, \lim _{n} f_{n}$, and $\int \lim _{n} f_{n}$.

Toward a Unit of Measure

Definition

The length of an interval in \mathbb{R}^{1} is the difference of the endpoints and is given by $\ell([a, b])=b-a$.

Goal: To have a set-function $m: \mathfrak{M} \rightarrow \mathbb{R}$ that "measures" the "size" of a set where m ideally satisfies:

1. $\mathfrak{M}=\mathcal{P}(\mathbb{R})$; id est, every set can be measured.
2. For every interval I, open or closed or not, $m(I)=\ell(I)$.
3. If the sequence $\left\{E_{n}\right\}$ is disjoint, then $m\left(\bigcup E_{n}\right)=\sum m\left(E_{n}\right)$.
4. m is translation invariant; i.e., $m(E+x)=m(E)$ for every E and any $x \in \mathbb{R}$.
Unfortunately, this is impossible. ${ }^{1}$ We give up the first and allow sets not to be in the class of measurable sets, $\mathfrak{M} \subset \mathcal{P}(\mathbb{R})$.
[^0]
σ-Algebra of Sets

Definition

Let \mathcal{A} be a collection of sets. Then \mathcal{A} is an algebra of sets or a Boolean algebra iff

- if $A \in \mathcal{A}$, then $A^{c} \in \mathcal{A}$,
- if $A, B \in \mathcal{A}$, then $A \cup B \in \mathcal{A}$.

De Morgan's laws imply that if $A, B \in \mathcal{A}$, then $A \cap B \in \mathcal{A}$. Then we also have $\emptyset \in \mathcal{A}$ and $X \in \mathcal{A}$.

Definition

Let \mathcal{A} be an algebra of sets. Then \mathcal{A} is a σ-algebra of sets or Borel field iff for every countable sequence $\left\{A_{i}\right\}$ of sets from \mathcal{A}, we have $\cup A_{i} \in \mathcal{A}$.
De Morgan's laws imply that countable intersections stay in \mathcal{A}.

σ-Algebra of Sets

Definition

Let \mathcal{A} be a collection of sets. Then \mathcal{A} is an algebra of sets or a Boolean algebra iff

- if $A \in \mathcal{A}$, then $A^{c} \in \mathcal{A}$,
- if $A, B \in \mathcal{A}$, then $A \cup B \in \mathcal{A}$.

De Morgan's laws imply that if $A, B \in \mathcal{A}$, then $A \cap B \in \mathcal{A}$. Then we also have $\emptyset \in \mathcal{A}$ and $X \in \mathcal{A}$.

Definition

Let \mathcal{A} be an algebra of sets. Then \mathcal{A} is a σ-algebra of sets or Borel field iff for every countable sequence $\left\{A_{i}\right\}$ of sets from \mathcal{A}, we have $\cup A_{i} \in \mathcal{A}$.
De Morgan's laws imply that countable intersections stay in \mathcal{A}.

Theorem

There is a smallest σ-algebra containing any collection of sets.

Sidebar: Borel Sets

Definition

The Borel σ-algebra on \mathbb{R} is the smallest σ-algebra containing \mathcal{G}, all of the open sets in \mathbb{R}, and is denoted by $\mathcal{B}(\mathbb{R})$.

Proposition

The Borel σ-algebra $\mathcal{B}(\mathbb{R})$ is (also) generated by each of:

- $\mathcal{F}=\{$ all closed sets in $\mathbb{R}\}$
- $\{(-\infty, b]: b \in \mathbb{R}\}$
- $\{(a, b]: a, b \in \mathbb{R}\}$

Proposition

Let $\mathcal{S}_{\delta}=\left\{\bigcap S_{i}: S_{i} \in \mathcal{S}\right\}$ and $\mathcal{S}_{\sigma}=\left\{\bigcup S_{i}: S_{i} \in \mathcal{S}\right\}$. Then

Countably Additive Measure

Definition

A countably additive measure is a set function m such that

- m is a non-negative extended real-valued function on a σ-algebra \mathfrak{M} of subsets of \mathbb{R}; that is, $m: \mathfrak{M} \rightarrow[0, \infty]$.
- $m\left(\bigcup E_{n}\right)=\sum m\left(E_{n}\right)$ for any sequence of disjoint subsets.

Countably Additive Measure

Definition

A countably additive measure is a set function m such that

- m is a non-negative extended real-valued function on a σ-algebra \mathfrak{M} of subsets of \mathbb{R}; that is, $m: \mathfrak{M} \rightarrow[0, \infty]$.
- $m\left(\bigcup E_{n}\right)=\sum m\left(E_{n}\right)$ for any sequence of disjoint subsets.

Exercises

Let m be a countably additive measure on the σ-algebra \mathfrak{M}.

1. If A and B are in \mathfrak{M} with $A \subset B$, then $m(A) \leq m(B)$.
2. If there is a set $A \in \mathfrak{M}$ with $m(A)<\infty$, then $m(\emptyset)=0$.
3. Show that m is countably subadditive or that for any sequence of sets, $m\left(\bigcup E_{n}\right) \leq \sum m\left(E_{n}\right)$. (Hint: $B_{n}=A_{n}-\bigcup_{i<n} A_{i}$.)
4. Let n be the counting measure, the number of elements in a set. Show that n satisfies Goals 1, 3, and 4 .

Outer Measure

Definition
The outer measure of A is

$$
m^{*}(A)=\inf _{A \subset \bigcup I_{n}} \sum_{n} \ell\left(I_{n}\right)
$$

where I_{n} is open and $\bigcup I_{n}$ covers A with a countable union.
Proposition
The outer measure of an interval is its length or $m^{*}(I)=\ell(I)$.

Outer Measure

Definition

The outer measure of A is

$$
m^{*}(A)=\inf _{A \subset \bigcup I_{n}} \sum_{n} \ell\left(I_{n}\right)
$$

where I_{n} is open and $\bigcup I_{n}$ covers A with a countable union.

Proposition

The outer measure of an interval is its length or $m^{*}(I)=\ell(I)$.
Proof.
I. $I=[a, b]$. (a) Since $[a, b] \subset(a-\epsilon, b+\epsilon)$, then $m^{*}(I) \leq b-a$. (b) Heine-Borel thm: we need only consider finite covers. Work with the finite cover to show $\sum \ell\left(I_{n}\right) \geq b-a$.

Outer Measure

Definition

The outer measure of A is

$$
m^{*}(A)=\inf _{A \subset \bigcup I_{n}} \sum_{n} \ell\left(I_{n}\right)
$$

where I_{n} is open and $\bigcup I_{n}$ covers A with a countable union.

Proposition

The outer measure of an interval is its length or $m^{*}(I)=\ell(I)$.
Proof.
I. $I=[a, b]$. (a) Since $[a, b] \subset(a-\epsilon, b+\epsilon)$, then $m^{*}(I) \leq b-a$. (b) Heine-Borel thm: we need only consider finite covers. Work with the finite cover to show $\sum \ell\left(I_{n}\right) \geq b-a$.
II. Any finite interval I. There is a closed interval $J \subset I$ such that $\ell(I)-\epsilon \leq \ell(J)=m^{*}(J) \leq m^{*}(I) \leq m^{*}(\bar{I})=\ell(I)$.

Outer Measure

Definition

The outer measure of A is

$$
m^{*}(A)=\inf _{A \subset \bigcup I_{n}} \sum_{n} \ell\left(I_{n}\right)
$$

where I_{n} is open and $\bigcup I_{n}$ covers A with a countable union.

Proposition

The outer measure of an interval is its length or $m^{*}(I)=\ell(I)$.
Proof.
I. $I=[a, b]$. (a) Since $[a, b] \subset(a-\epsilon, b+\epsilon)$, then $m^{*}(I) \leq b-a$. (b) Heine-Borel thm: we need only consider finite covers. Work with the finite cover to show $\sum \ell\left(I_{n}\right) \geq b-a$.
II. Any finite interval I. There is a closed interval $J \subset I$ such that $\ell(I)-\epsilon \leq \ell(J)=m^{*}(J) \leq m^{*}(I) \leq m^{*}(\bar{I})=\ell(I)$.
III. Any infinite interval.

Outer Measure is Countably Subadditive

Theorem
Let $\left\{A_{n}\right\}$ be a countable collection of subsets of \mathbb{R}. Then

$$
m^{*}\left(\bigcup_{n} A_{n}\right) \leq \sum_{n} m^{*}\left(A_{n}\right)
$$

Outer Measure is Countably Subadditive

Theorem
Let $\left\{A_{n}\right\}$ be a countable collection of subsets of \mathbb{R}. Then

$$
m^{*}\left(\bigcup_{n} A_{n}\right) \leq \sum_{n} m^{*}\left(A_{n}\right)
$$

Proof.
"Wolog" all A_{n} 's have finite outer measure. For each A_{n} there is a countable collection of open intervals $\left\{I_{n, i}\right\}$ covering A_{n} such that

$$
\sum_{i} \ell\left(I_{n, i}\right)<m^{*}\left(A_{n}\right)+\frac{\epsilon}{2^{n}}
$$

Outer Measure is Countably Subadditive

Theorem

Let $\left\{A_{n}\right\}$ be a countable collection of subsets of \mathbb{R}. Then

$$
m^{*}\left(\bigcup_{n} A_{n}\right) \leq \sum_{n} m^{*}\left(A_{n}\right)
$$

Proof.
"Wolog" all A_{n} 's have finite outer measure. For each A_{n} there is a countable collection of open intervals $\left\{I_{n, i}\right\}$ covering A_{n} such that

$$
\sum_{i} \ell\left(I_{n, i}\right)<m^{*}\left(A_{n}\right)+\frac{\epsilon}{2^{n}}
$$

The set $\left\{I_{n, i}: n, i \in \mathbb{N}\right\}$ covers $\bigcup A_{n}$. Thence
$m^{*}\left(\bigcup_{n} A_{n}\right) \leq \sum_{n, i} \ell\left(I_{n, i}\right)=\sum_{n} \sum_{i} \ell\left(I_{n, i}\right)<\sum_{n}\left(m^{*}\left(A_{n}\right)+\frac{\epsilon}{2^{n}}\right)$

Measured Exercises

Exercises

1. If A is a countable set, then $m^{*}(A)=0$.
2. The closed interval $[0,1]$ is not countable.
3. Show that $m^{*}(\mathbb{Q} \cap[0,1])=0$ and $m^{*}(\mathbb{Q})=0$.
4. Let $A=\mathbb{Q} \cap[0,1]$ and let $\left\{I_{n}: n=1 . . N\right\}$ be a finite collection of open intervals covering A. Then $\sum \ell\left(I_{n}\right) \geq 1$.
5. Reconcile 1. through 4.
6. Given any set A and any $\epsilon>0$, there is an open set G such that $A \subset G$ and $m^{*}(G) \leq m^{*}(A)+\epsilon$. (Confer "Littlewood's Three Principles.")
7. Why is m^{*} translation invariant?

Lebesgue Measure

Lebesgue outer measure m^{*} satisfies goals 1,2 , and 4 , but not goal 3 , countable additivity; m^{*} is only countably subadditive. We can gain countable additivity by giving up goal 1 and reducing the collection \mathfrak{M} of sets; there will be sets that can't be measured. This approach is not without difficulties, though. The existence of nonmeasurable sets ${ }^{2}$ leads to problems such as Vitali's theorem which yields a method of decomposing the interval $[0,1]$ into a set of measure 2. (Also see the Hausdorff paradox.)

We will use the definition of a set being measurable that was given by Carathéodory.
${ }^{2}$ See "Non-measurable_set" for an intuitive explanation.

Measurable Sets

Definition
The set E is measurable iff for each set A we have

$$
m^{*}(A)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right) .
$$

Proposition
If E is measurable, then then E^{c} is measurable.
Proposition
If $m^{*}(E)=0$, then E is measurable.
Proof.
Let A be any set. Then $A \cap E \subset E$ implies $m^{*}(A \cap E) \leq m^{*}(E)$.
Hence $m^{*}(A \cap E)=0$. Now $A \cap E^{c} \subset A$, so

$$
m^{*}(A) \geq m^{*}\left(A \cap E^{c}\right)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)
$$

Properties of "Measurable"

Proposition

If E_{1} and E_{2} are measurable, then so is $E_{1} \cup E_{2}$.
Proof.
Let A be any set. Since $E_{2} \in \mathfrak{M}$, then

$$
m^{*}\left(A \cap E_{1}^{c}\right)=m^{*}\left(\left(A \cap E_{1}^{c}\right) \cap E_{2}\right)+m^{*}\left(\left(A \cap E_{1}^{c}\right) \cap E_{2}^{c}\right)
$$

From $A \cap\left(E_{1} \cup E_{2}\right)=\left(A \cap E_{1}\right) \cup\left(A \cap E_{2} \cap E_{1}^{c}\right)$, we see that

$$
m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right) \leq m^{*}\left(A \cap E_{1}\right)+m^{*}\left(A \cap E_{2} \cap E_{1}^{c}\right)
$$

So

$$
\begin{aligned}
& m^{*}(A\left.\cap\left(E_{1} \cup E_{2}\right)\right)+m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right) \\
& \leq m^{*}\left(A \cap E_{1}\right)+m^{*}\left(A \cap E_{2} \cap E_{1}^{c}\right)+m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right) \\
& \quad=m^{*}\left(A \cap E_{1}\right)+m^{*}\left(A \cap E_{1}^{c}\right)=m^{*}(A)
\end{aligned}
$$

Properties of "Measurable"

Proposition

If E_{1} and E_{2} are measurable, then so is $E_{1} \cup E_{2}$.
Proof.
Let A be any set. Since $E_{2} \in \mathfrak{M}$, then

$$
m^{*}\left(A \cap E_{1}^{c}\right)=m^{*}\left(\left(A \cap E_{1}^{c}\right) \cap E_{2}\right)+m^{*}\left(\left(A \cap E_{1}^{c}\right) \cap E_{2}^{c}\right)
$$

From $A \cap\left(E_{1} \cup E_{2}\right)=\left(A \cap E_{1}\right) \cup\left(A \cap E_{2} \cap E_{1}^{c}\right)$, we see that

$$
m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right) \leq m^{*}\left(A \cap E_{1}\right)+m^{*}\left(A \cap E_{2} \cap E_{1}^{c}\right)
$$

So

$$
\begin{aligned}
m^{*}(A & \left.\cap\left(E_{1} \cup E_{2}\right)\right)+m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right) \\
& \leq m^{*}\left(A \cap E_{1}\right)+m^{*}\left(A \cap E_{2} \cap E_{1}^{c}\right)+m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right) \\
& =m^{*}\left(A \cap E_{1}\right)+m^{*}\left(A \cap E_{1}^{c}\right)=m^{*}(A)
\end{aligned}
$$

Proposition
\mathfrak{M} is an algebra of sets.

A Bigger "Measurable" Cup

Proposition

Let A be any set and $E_{1}, E_{2}, \ldots, E_{N}$ be a finite sequence of disjoint measurable sets. Then

$$
m^{*}\left(A \cap\left[\bigcup_{i=1}^{N} E_{i}\right]\right)=\sum_{i=1}^{N} m^{*}\left(A \cap E_{i}\right)
$$

Proof.
Induction on n with $\left(A \cap \bigcup^{n} E_{i}\right) \cap E_{n}=A \cap E_{n}$ and
$\left(A \cap \bigcup^{n} E_{i}\right) \cap E_{n}^{c}=A \cap\left(\bigcup^{n-1} E_{i}\right)$.

A Countable "Measurable" Cup

Proposition

Let E_{1}, E_{2}, \ldots be a countable sequence of measurable sets.
Then $E=\bigcup_{i=1}^{\infty} E_{i}$ is measurable.

Proof.

Wolog the E_{i} are pairwise disjoint. (Otherwise define B_{i}
$=E_{i}-\bigcup_{j=1}^{i-1} E_{j}$.) Let A be any set and set $F_{n}=\bigcup_{i=1}^{n} E_{i}$. Then
$F_{n} \in \mathfrak{M}$ and $F_{n}^{c} \supset E^{c}$. Then $m^{*}\left(A \cap F_{n}\right)=\sum_{i=1}^{n} m^{*}\left(A \cap E_{i}\right)$. Hence, since n is arbitrary and $m^{*}(A)$ is independent of n,
$m^{*}(A) \geq \sum_{i=1}^{n} m^{*}\left(A \cap E_{i}\right)+m^{*}\left(A \cap E^{c}\right) \geq m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)$

A Countable "Measurable" Cup

Proposition

Let E_{1}, E_{2}, \ldots be a countable sequence of measurable sets.
Then $E=\bigcup_{i=1}^{\infty} E_{i}$ is measurable.
Proof.
Wolog the E_{i} are pairwise disjoint. (Otherwise define B_{i}
$=E_{i}-\bigcup_{j=1}^{i-1} E_{j}$.) Let A be any set and set $F_{n}=\bigcup_{i=1}^{n} E_{i}$. Then
$F_{n} \in \mathfrak{M}$ and $F_{n}^{c} \supset E^{c}$. Then $m^{*}\left(A \cap F_{n}\right)=\sum_{i=1}^{n} m^{*}\left(A \cap E_{i}\right)$. Hence, since n is arbitrary and $m^{*}(A)$ is independent of n,
$m^{*}(A) \geq \sum_{i=1}^{n} m^{*}\left(A \cap E_{i}\right)+m^{*}\left(A \cap E^{c}\right) \geq m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)$
Proposition
\mathfrak{M} is a σ-algebra of sets.

The Lebesgue Measure m.

Definition
Define Lebesgue measure to be the restriction $m=\left.m^{*}\right|_{\mathfrak{M}}$.

The Lebesgue Measure m.

Definition
Define Lebesgue measure to be the restriction $m=\left.m^{*}\right|_{\mathfrak{M}}$.
Theorem
The Borel sets are Lebesgue measurable.

The Lebesgue Measure m.

Definition
Define Lebesgue measure to be the restriction $m=\left.m^{*}\right|_{\mathfrak{M}}$.
Theorem
The Borel sets are Lebesgue measurable.
Theorem
Let E be a set and let $\epsilon>0$. TFAE:

1. E is Lebesgue measurable
2. there is an open set $E \subset G$ such that $m^{*}(G-E)<\epsilon$
3. there is a closed set $F \subset E$ such that $m^{*}(E-F)<\epsilon$
4. there is a $G \in \mathcal{G}_{\delta}$ such that $E \subset G$ and $m^{*}(G-E)=0$
5. there is an $F \in \mathcal{F}_{\sigma}$ such that $F \subset E$ and $m^{*}(E-F)=0$

Measure Zero

Definition
A set $S \subset \mathbb{R}$ has measure zero if and only if $m(S)=0$; i.e., for any $\epsilon>0$ there is an open cover $\mathcal{C}=\left\{G_{k} \mid k \in \mathbb{N}\right\}$ of S such that $\sum_{k \in \mathbb{N}} m\left(G_{k}\right)<\epsilon$.

Example

1. Any finite set (countable set) has measure zero.
2. Every interval $[a, b]$ is not measure zero (when $a<b$).

The length of $[0,1]$ is 1 . The rationals contained in $[0,1]$ have measure zero. What is the measure of the irrationals in $[0,1]$?
Definition (A.E.)
A property that holds for all x except on a set of measure zero is said to hold almost everywhere.

Sidebar: \mathbb{Q} Is Small

Theorem

The rationals are countable.

Proof.

Let \mathbb{Q} be the set of rational numbers. The array below shows a method of enumerating all elements of \mathbb{Q}.

$$
\begin{array}{ccccc}
1 / 1_{(1)} & 2 / 1_{(2)} & 3 / 1_{(4)} & 4 / 1_{(7)} & \cdots \\
1 / 2_{(3)} & 2 / 2_{(5)} & 3 / 2_{(8)} & 4 / 2_{(12)} & \cdots \\
1 / 3_{(6)} & 2 / 3_{(9)} & 3 / 3_{(13)} & 4 / 3_{(18)} & \cdots \\
1 / 4_{(10)} & 2 / 4_{(14)} & 3 / 4_{(19)} & 4 / 4_{(25)} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$

Since each rational is counted, we have $|\mathbb{Q}| \leq|\mathbb{N}|$ where we use $|\cdot|$ to indicate cardinality (or size). But we know that $\mathbb{N} \subseteq \mathbb{Q}$, so that $|\mathbb{N}| \leq|\mathbb{Q}|$. Hence $|\mathbb{Q}|=|\mathbb{N}|$.

Covering \mathbb{Q}

Theorem

The set of rationals has measure zero.

Proof.

Let $\epsilon>0$. List the rationals in order $\mathbb{Q}=\left\{r_{1}, r_{2}, r_{3}, \ldots\right\}$ as given by the "countability matrix" defined earlier. For each rational r_{k}, define the open interval $I_{k}=\left(r_{k}-\epsilon / 2^{k+1}, r_{k}+\epsilon / 2^{k+1}\right)$. Then

- the collection $\mathcal{C}=\left\{I_{k} \mid k \in \mathbb{N}\right\}$ forms an open cover of \mathbb{Q},
- the length of each I_{k} is $m\left(I_{k}\right)=\epsilon / 2^{k}$.

Then $m(\mathbb{Q}) \leq m(\mathcal{C})$ which is

$$
m(\mathbb{Q}) \leq m(\mathcal{C})=\sum_{k=1}^{\infty} m\left(I_{k}\right)=\sum_{k=1}^{\infty} \epsilon / 2^{k}=\epsilon \sum_{k=1}^{\infty} \frac{1}{2^{k}}=\epsilon
$$

Measurable Functions

Proposition (measurability condition)
Let f be an extended real-valued function on a measurable domain D. Then TFAE:

1. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x)>\alpha\}$ is measurable.
2. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x) \geq \alpha\}$ is measurable.
3. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x)<\alpha\}$ is measurable.
4. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x) \leq \alpha\}$ is measurable.

These imply
5. For each $\beta \in \mathbb{R}_{\infty}$, the set $\{x: f(x)=\beta\}$ is measurable.

Measurable Functions

Proposition (measurability condition)
Let f be an extended real-valued function on a measurable domain D. Then TFAE:

1. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x)>\alpha\}$ is measurable.
2. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x) \geq \alpha\}$ is measurable.
3. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x)<\alpha\}$ is measurable.
4. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x) \leq \alpha\}$ is measurable.

These imply
5. For each $\beta \in \mathbb{R}_{\infty}$, the set $\{x: f(x)=\beta\}$ is measurable.

Proof.
(1.) \Longrightarrow (2.) $\{x: f(x) \geq \alpha\}=\bigcap\{x: f(x)>\alpha-1 / n\}$

Measurable Functions

Proposition (measurability condition)

Let f be an extended real-valued function on a measurable domain D. Then TFAE:

1. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x)>\alpha\}$ is measurable.
2. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x) \geq \alpha\}$ is measurable.
3. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x)<\alpha\}$ is measurable.
4. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x) \leq \alpha\}$ is measurable.

These imply
5. For each $\beta \in \mathbb{R}_{\infty}$, the set $\{x: f(x)=\beta\}$ is measurable.

Proof.
(1.) \Longrightarrow
(2.) $\{x: f(x) \geq \alpha\}=\bigcap\{x: f(x)>\alpha-1 / n\}$
(2.) \Longrightarrow
(3.) $\{x: f(x)<\alpha\}=D-\{x: f(x) \geq \alpha\}$

Measurable Functions

Proposition (measurability condition)

Let f be an extended real-valued function on a measurable domain D. Then TFAE:

1. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x)>\alpha\}$ is measurable.
2. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x) \geq \alpha\}$ is measurable.
3. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x)<\alpha\}$ is measurable.
4. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x) \leq \alpha\}$ is measurable.

These imply
5. For each $\beta \in \mathbb{R}_{\infty}$, the set $\{x: f(x)=\beta\}$ is measurable.

Proof.
(1.) $\Longrightarrow(2).\{x: f(x) \geq \alpha\}=\bigcap\{x: f(x)>\alpha-1 / n\}$
$(2.) \Longrightarrow(3).\{x: f(x)<\alpha\}=D-\{x: f(x) \geq \alpha\}$
$(3.) \Longrightarrow(4).\{x: f(x) \leq \alpha\}=\bigcap\{x: f(x)<\alpha+1 / n\}$

Measurable Functions

Proposition (measurability condition)

Let f be an extended real-valued function on a measurable domain D. Then TFAE:

1. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x)>\alpha\}$ is measurable.
2. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x) \geq \alpha\}$ is measurable.
3. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x)<\alpha\}$ is measurable.
4. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x) \leq \alpha\}$ is measurable.

These imply
5. For each $\beta \in \mathbb{R}_{\infty}$, the set $\{x: f(x)=\beta\}$ is measurable.

Proof.
(1.) \Longrightarrow (2.) $\{x: f(x) \geq \alpha\}=\bigcap\{x: f(x)>\alpha-1 / n\}$
(2.) \Longrightarrow (3.) $\{x: f(x)<\alpha\}=D-\{x: f(x) \geq \alpha\}$
(3.) \Longrightarrow (4.) $\{x: f(x) \leq \alpha\}=\bigcap\{x: f(x)<\alpha+1 / n\}$
(4.) \Longrightarrow (1.) $\{x: f(x)>\alpha\}=D-\{x: f(x) \leq \alpha\}$

Measurable Functions

Proposition (measurability condition)

Let f be an extended real-valued function on a measurable domain D. Then TFAE:

1. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x)>\alpha\}$ is measurable.
2. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x) \geq \alpha\}$ is measurable.
3. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x)<\alpha\}$ is measurable.
4. For each $\alpha \in \mathbb{R}$, the set $\{x: f(x) \leq \alpha\}$ is measurable.

These imply
5. For each $\beta \in \mathbb{R}_{\infty}$, the set $\{x: f(x)=\beta\}$ is measurable.

Proof.

(1.) \Longrightarrow (2.) $\{x: f(x) \geq \alpha\}=\bigcap\{x: f(x)>\alpha-1 / n\}$
(2.) \Longrightarrow (3.) $\{x: f(x)<\alpha\}=D-\{x: f(x) \geq \alpha\}$
(3.) \Longrightarrow (4.) $\{x: f(x) \leq \alpha\}=\bigcap\{x: f(x)<\alpha+1 / n\}$
(4.) \Longrightarrow (1.) $\{x: f(x)>\alpha\}=D-\{x: f(x) \leq \alpha\}$
$(*.) \Longrightarrow$ (5.) Exercise. (2 cases: $\beta<\infty$ and $\beta= \pm \infty$.)

Definition of a Measurable Function

Definition

Let D be measurable. Then $f: D \rightarrow \mathbb{R}_{\infty}$ is measurable iff f satisfies the measurability condition.

Proposition
Let f and g be measurable (real-valued) functions defined on D and $c \in \mathbb{R}$. Then $f+c, c f, f \pm g, f^{2}$, and $f g$ are measurable.

Definition of a Measurable Function

Definition

Let D be measurable. Then $f: D \rightarrow \mathbb{R}_{\infty}$ is measurable iff f satisfies the measurability condition.

Proposition
Let f and g be measurable (real-valued) functions defined on D and $c \in \mathbb{R}$. Then $f+c, c f, f \pm g, f^{2}$, and $f g$ are measurable.
Proof (sketch).
$(f+c, c f)$: Use $\{x: f(x)+c<\alpha\}=\{x: f(x)<\alpha-c\}$, etc.

Definition of a Measurable Function

Definition

Let D be measurable. Then $f: D \rightarrow \mathbb{R}_{\infty}$ is measurable iff f satisfies the measurability condition.

Proposition

Let f and g be measurable (real-valued) functions defined on D and $c \in \mathbb{R}$. Then $f+c, c f, f \pm g, f^{2}$, and $f g$ are measurable.
Proof (sketch).
$(f+c, c f)$: Use $\{x: f(x)+c<\alpha\}=\{x: f(x)<\alpha-c\}$, etc. $(f+g)$: If $f(x)+g(x)<\alpha$, there is an $r \in \mathbb{Q}(r=r(\alpha) \neq r(x))$ such that $f(x)<r<\alpha-g(x)$. Thus $\{x: f(x)+g(x)<\alpha\}=\bigcup_{r}(\{x: f(x)<r\} \cap\{x: g(x)<\alpha-r\})$ is a countable union of measurable sets, hence is measurable.

Definition of a Measurable Function

Definition

Let D be measurable. Then $f: D \rightarrow \mathbb{R}_{\infty}$ is measurable iff f satisfies the measurability condition.

Proposition

Let f and g be measurable (real-valued) functions defined on D and $c \in \mathbb{R}$. Then $f+c, c f, f \pm g, f^{2}$, and $f g$ are measurable.
Proof (sketch).
$(f+c, c f)$: Use $\{x: f(x)+c<\alpha\}=\{x: f(x)<\alpha-c\}$, etc. $(f+g)$: If $f(x)+g(x)<\alpha$, there is an $r \in \mathbb{Q}(r=r(\alpha) \neq r(x))$ such that $f(x)<r<\alpha-g(x)$. Thus $\{x: f(x)+g(x)<\alpha\}=\bigcup_{r}(\{x: f(x)<r\} \cap\{x: g(x)<\alpha-r\})$ is a countable union of measurable sets, hence is measurable. $\left(f^{2}\right)$: Use $\left\{x: f^{2}(x)>\alpha\right\}=\{x: f(x)>\sqrt{\alpha}\} \cup\{x: f(x)<-\sqrt{\alpha}\}$.

Definition of a Measurable Function

Definition

Let D be measurable. Then $f: D \rightarrow \mathbb{R}_{\infty}$ is measurable iff f satisfies the measurability condition.

Proposition

Let f and g be measurable (real-valued) functions defined on D and $c \in \mathbb{R}$. Then $f+c, c f, f \pm g, f^{2}$, and $f g$ are measurable.

Proof (sketch).
$(f+c, c f)$: Use $\{x: f(x)+c<\alpha\}=\{x: f(x)<\alpha-c\}$, etc.
$(f+g)$: If $f(x)+g(x)<\alpha$, there is an $r \in \mathbb{Q}(r=r(\alpha) \neq r(x))$
such that $f(x)<r<\alpha-g(x)$. Thus
$\{x: f(x)+g(x)<\alpha\}=\bigcup_{r}(\{x: f(x)<r\} \cap\{x: g(x)<\alpha-r\})$
is a countable union of measurable sets, hence is measurable. $\left(f^{2}\right)$: Use $\left\{x: f^{2}(x)>\alpha\right\}=\{x: f(x)>\sqrt{\alpha}\} \cup\{x: f(x)<-\sqrt{\alpha}\}$.
$(f g)$: Use $f g=\frac{1}{4}(f+g)^{2}-\frac{1}{4}(f-g)^{2}$.

Sequences of Measurable Functions

Theorem
Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on a common domain D. Then the functions

$$
\sup \left\{f_{1}, \ldots, f_{n}\right\}, \quad \sup _{n} f_{n}, \quad \limsup _{n} f_{n}
$$

are measurable. Analogous statements hold for inf and liminf .

Sequences of Measurable Functions

Theorem

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on a common domain D. Then the functions

$$
\sup \left\{f_{1}, \ldots, f_{n}\right\}, \quad \sup _{n} f_{n}, \quad \limsup _{n} f_{n}
$$

are measurable. Analogous statements hold for inf and liminf .
Proof.
Set $h=\sup \left\{f_{1}, \ldots, f_{n}\right\}$, then

$$
\{x: h(x)>\alpha\}=\bigcup_{i=1}\left\{x: f_{i}(x)>\alpha\right\}
$$

Hence h is measurable. Now set $g=\sup _{n} f_{n}$, then

$$
\{x: g(x)>\alpha\}=\bigcup_{i=1}\left\{x: f_{i}(x)>\alpha\right\}
$$

Hence g is measurable. Combine the above with the definition $\limsup _{n} f_{n}=\inf _{n} \sup _{k \geq n} f_{k}$ to finish.

'Simple’ Functions are Measurable

Proposition

If f is measurable and $g=f$ a.e., then g is measurable.
Proof.
Set $E=\{x: f(x) \neq g(x)\}$. Then $m(E)=0$. So $\{x: g(x)>\alpha\}$
$=\{x: f(x)>\alpha\} \cup\{x \in E: g(x)>\alpha\}-\{x \in E: g(x) \leq \alpha\} . \square$
Definition
A measurable real-valued function ϕ is simple if it assumes only finitely many values. Then

$$
\phi(x)=\sum_{k=1}^{n} \alpha_{k} \chi_{A_{k}}(x) \quad \text { where } \quad A_{k}=\left\{x: \phi(x)=\alpha_{k}\right\}
$$

If each A_{k} is an interval, then ϕ is called a step function.

'Simple’ Functions are Measurable

Proposition

If f is measurable and $g=f$ a.e., then g is measurable.
Proof.
Set $E=\{x: f(x) \neq g(x)\}$. Then $m(E)=0$. So $\{x: g(x)>\alpha\}$
$=\{x: f(x)>\alpha\} \cup\{x \in E: g(x)>\alpha\}-\{x \in E: g(x) \leq \alpha\}$. \square
Definition
A measurable real-valued function ϕ is simple if it assumes only finitely many values. Then

$$
\phi(x)=\sum_{k=1}^{n} \alpha_{k} \chi_{A_{k}}(x) \quad \text { where } \quad A_{k}=\left\{x: \phi(x)=\alpha_{k}\right\}
$$

If each A_{k} is an interval, then ϕ is called a step function.

Example

- $s(x)=\sum_{k=1}^{N} \frac{k^{2}}{N^{2}} \chi_{\left[\frac{k-1}{N}, \frac{k}{N}\right]}(x)$ is a step function; $\chi_{\mathbb{Q}}$ is simple.

Measurable Functions are 'Simple'

Proposition

Let $f:[a, b] \rightarrow \mathbb{R}_{\infty}$ be measurable such that $m(\{f(x)= \pm \infty\})$ is zero. Given $\epsilon>0$, there is a step function s and a continuous function h so that $|f-s|<\epsilon$ and $|f-h|<\epsilon$ a.e.

Measurable Functions are 'Simple'

Proposition

Let $f:[a, b] \rightarrow \mathbb{R}_{\infty}$ be measurable such that $m(\{f(x)= \pm \infty\})$ is zero. Given $\epsilon>0$, there is a step function s and a continuous function h so that $|f-s|<\epsilon$ and $|f-h|<\epsilon$ a.e.

Proof (Exercise).

1. There is an M such that $|f| \leq M$ except on a set of measure $<\epsilon / 3$.
2. There is a simple function ϕ such that $|f-\phi|<\epsilon$ except when $|f|>M$. (Hint: $\left(M-{ }^{-} M\right) \leq n \cdot \epsilon$.)
3. There is a step function g such that $g=\phi$ except on a set of measure $<\epsilon / 3$. (Hint: look here.)
4. There is a continuous function h such that $h=g$ except on a set of measure $<\epsilon / 3$. (Hint: think like a spline.)

Functionally Measured Exercises

Exercises

1. Let ϕ_{1} and ϕ_{2} be simple functions and $c \in \mathbb{R}$. Show that
a. $c \phi$ is a simple function,
b. $\phi_{1}+\phi_{2}$ is a simple function,
c. $\phi_{1} \cdot \phi_{2}$ is a simple function.
2. For a set S define the characteristic or indicator function to be $\chi_{S}(x)=\left\{\begin{array}{ll}1 & x \in S \\ 0 & x \notin S\end{array}\right.$. Show that
a. $\chi_{A \cap B}=\chi_{A} \cdot \chi_{B}$,
b. $\chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A} \cdot \chi_{B}$.
c. $\chi_{A^{c}}=1-\chi_{A}$.
3. Let D be a dense set of real numbers; i.e., every interval contains an element of D. Let f be an extended realvalued function on \mathbb{R} such that for any $d \in D$, the set $\{x: f(x)>d\}$ is measurable. Then f is measurable.

Integration

We began by looking at two examples of integration problems.

- The Riemann integral over $[0,1]$ of a function with infinitely many discontinuities didn't exist even though the points of discontinuity formed a set of measure zero.
(The points of discontinuity formed a dense set in $[0,1]$.)
- The limit of a sequence of Riemann integrable functions did not equal the integral of the limit function of the sequence. (Each function had area $1 / 2$, but the limit of the sequence was the zero function.)
We will look at Riemann integration, then Riemann-Stieltjes integration, and last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy, Gauge, Perron, etc. See the list given in the "See also" section of Integrals on Mathworld.

Riemann Integral

Definition

- A partition \mathcal{P} of $[a, b]$ is a finite set of points such that

$$
\mathcal{P}=\left\{a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b\right\} .
$$

- Set $M_{i}=\sup f(x)$ on $\left[x_{i-1}, x_{i}\right]$. The upper sum of f on $[a, b]$ w.r.t. \mathcal{P} is

$$
U(\mathcal{P}, f)=\sum_{i=1}^{n} M_{i} \cdot \Delta x_{i}
$$

- The upper Riemann integral of f over $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\inf _{\mathcal{P}} U(\mathcal{P}, f)
$$

Exercise

1. Define the lower sum $L(\mathcal{P}, f)$ and the lower integral $\int_{a}^{b} f$.

Definitely a Riemann Integral

Definition
If $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x$, then f is Riemann integrable and is written as $\int_{a}^{b} f(x) d x$ and $f \in \mathfrak{R}$ on $[a, b]$.

Proposition

A function f is Riemann integrable on $[a, b]$ if and only if for every $\epsilon>0$ there is a partition \mathcal{P} of $[a, b]$ such that

$$
U(\mathcal{P}, f)-L(\mathcal{P}, f)<\epsilon
$$

Definitely a Riemann Integral

Definition
If $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x$, then f is Riemann integrable and is written as $\int_{a}^{b} f(x) d x$ and $f \in \mathfrak{R}$ on $[a, b]$.

Proposition
A function f is Riemann integrable on $[a, b]$ if and only if for every $\epsilon>0$ there is a partition \mathcal{P} of $[a, b]$ such that

$$
U(\mathcal{P}, f)-L(\mathcal{P}, f)<\epsilon
$$

Theorem
If f is continuous on $[a, b]$, then $f \in \mathfrak{R}$ on $[a, b]$.

Definitely a Riemann Integral

Definition
If $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x$, then f is Riemann integrable and is written as $\int_{a}^{b} f(x) d x$ and $f \in \mathfrak{R}$ on $[a, b]$.

Proposition

A function f is Riemann integrable on $[a, b]$ if and only if for every $\epsilon>0$ there is a partition \mathcal{P} of $[a, b]$ such that

$$
U(\mathcal{P}, f)-L(\mathcal{P}, f)<\epsilon
$$

Theorem
If f is continuous on $[a, b]$, then $f \in \mathfrak{R}$ on $[a, b]$.
Theorem
If f is bounded on $[a, b]$ with only finitely many points of discontinuity, then $f \in \mathfrak{R}$ on $[a, b]$.

Properties of Riemann Integrals

Proposition
Let f and $g \in \mathfrak{R}$ on $[a, b]$ and $c \in \mathbb{R}$. Then

- $\int_{a}^{b} c f d x=c \int_{a}^{b} f d x$
- $\int_{a}^{b}(f+g) d x=\int_{a}^{b} f d x+\int_{a}^{b} g d x$
- $f \cdot g \in \mathfrak{R}$
- if $f \leq g$, then $\int_{a}^{b} f d x \leq \int_{a}^{b} g d x$

Properties of Riemann Integrals

Proposition

Let f and $g \in \mathfrak{R}$ on $[a, b]$ and $c \in \mathbb{R}$. Then

- $\int_{a}^{b} c f d x=c \int_{a}^{b} f d x$
- $\int_{a}^{b}(f+g) d x=\int_{a}^{b} f d x+\int_{a}^{b} g d x$
- $f \cdot g \in \mathfrak{R}$
- if $f \leq g$, then $\int_{a}^{b} f d x \leq \int_{a}^{b} g d x$
- $\left|\int_{a}^{b} f d x\right| \leq \int_{a}^{b}|f| d x$

Properties of Riemann Integrals

Proposition

Let f and $g \in \mathfrak{R}$ on $[a, b]$ and $c \in \mathbb{R}$. Then

- $\int_{a}^{b} c f d x=c \int_{a}^{b} f d x$
- $\int_{a}^{b}(f+g) d x=\int_{a}^{b} f d x+\int_{a}^{b} g d x$
- $f \cdot g \in \mathfrak{R}$
- if $f \leq g$, then $\int_{a}^{b} f d x \leq \int_{a}^{b} g d x$
- $\left|\int_{a}^{b} f d x\right| \leq \int_{a}^{b}|f| d x$
- Define $F(x)=\int_{a}^{x} f(t) d t$. Then F is continuous and, if f is continuous at x_{0}, then $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$

Properties of Riemann Integrals

Proposition

Let f and $g \in \mathfrak{R}$ on $[a, b]$ and $c \in \mathbb{R}$. Then

- $\int_{a}^{b} c f d x=c \int_{a}^{b} f d x$
- $\int_{a}^{b}(f+g) d x=\int_{a}^{b} f d x+\int_{a}^{b} g d x$
- $f \cdot g \in \mathfrak{R}$
- if $f \leq g$, then $\int_{a}^{b} f d x \leq \int_{a}^{b} g d x$
- $\left|\int_{a}^{b} f d x\right| \leq \int_{a}^{b}|f| d x$
- Define $F(x)=\int_{a}^{x} f(t) d t$. Then F is continuous and, if f is continuous at x_{0}, then $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$
- If $F^{\prime}=f$ on $[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$

Riemann Integrated Exercises

Exercises

1. If $\int_{a}^{b}|f(x)| d x=0$, then $f=0$.
2. Show why $\int_{0}^{1} \chi_{\mathbb{Q}}(x) d x$ does not exist.
3. Define

$$
S_{n}(x)=\sum_{k=1}^{n+1}\left(\frac{k-1}{k} \cdot \chi_{\left[\frac{k-1}{k}, \frac{k}{k+1}\right)}(x)\right)+\frac{n}{n+1} \chi_{\left[\frac{n+1}{n+2}, 1\right]}(x)
$$

3.1 How many discontinuities does S_{n} have?
3.2 Prove that $S_{n}^{\prime}(x)=0$ a.e.
3.3 Calculate $\int_{0}^{1} S_{n}(x) d x$.
3.4 What is S_{∞} ?
3.5 Does $\int_{0}^{1} S_{\infty}(x) d x$ exist?
(See an animated graph of S_{N}.)

Riemann-Stieltjes Integral

Definition

- Let $\alpha(x)$ be a monotonically increasing function on $[a, b]$. Set $\Delta \alpha_{i}=\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)$.
- Set $M_{i}=\sup f(x)$ on $\left[x_{i-1}, x_{i}\right]$. The upper sum of f on $[a, b]$ w.r.t. α and \mathcal{P} is

$$
U(\mathcal{P}, f, \alpha)=\sum_{i=1}^{n} M_{i} \cdot \Delta \alpha_{i}
$$

- The upper Riemann-Stieltjes integral of f over $[a, b]$ w.r.t. α is

$$
\int_{a}^{b} f(x) d \alpha(x)=\inf _{\mathcal{P}} U(\mathcal{P}, f, \alpha)
$$

Exercise

1. Define the lower sum $L(\mathcal{P}, f, \alpha)$ and lower integral $\int_{a}^{b} f d \alpha$.

Definitely a Riemann-Stieltjes Integral

Definition
If $\int_{a}^{b} f d \alpha=\int_{a}^{b} f d \alpha$, then f is Riemann-Stieltjes integrable and is written as $\int_{a}^{b} f(x) d \alpha(x)$ and $f \in \mathfrak{R}(\alpha)$ on $[a, b]$.

Proposition
A function f is Riemann-Stieltjes integrable w.r.t. α on $[a, b]$ iff for every $\epsilon>0$ there is a partition \mathcal{P} of $[a, b]$ such that

$$
U(\mathcal{P}, f, \alpha)-L(\mathcal{P}, f, \alpha)<\epsilon .
$$

Definitely a Riemann-Stieltjes Integral

Definition
If $\int_{a}^{b} f d \alpha=\int_{a}^{b} f d \alpha$, then f is Riemann-Stieltjes integrable and is written as $\int_{a}^{b} f(x) d \alpha(x)$ and $f \in \mathfrak{R}(\alpha)$ on $[a, b]$.
Proposition
A function f is Riemann-Stieltjes integrable w.r.t. α on $[a, b]$ iff for every $\epsilon>0$ there is a partition \mathcal{P} of $[a, b]$ such that

$$
U(\mathcal{P}, f, \alpha)-L(\mathcal{P}, f, \alpha)<\epsilon .
$$

Theorem
If f is continuous on $[a, b]$, then $f \in \mathfrak{R}(\alpha)$ on $[a, b]$.

Definitely a Riemann-Stieltjes Integral

Definition
If $\int_{a}^{b} f d \alpha=\int_{a}^{b} f d \alpha$, then f is Riemann-Stieltjes integrable and is written as $\int_{a}^{b} f(x) d \alpha(x)$ and $f \in \mathfrak{R}(\alpha)$ on $[a, b]$.
Proposition
A function f is Riemann-Stieltjes integrable w.r.t. α on $[a, b]$ iff for every $\epsilon>0$ there is a partition \mathcal{P} of $[a, b]$ such that

$$
U(\mathcal{P}, f, \alpha)-L(\mathcal{P}, f, \alpha)<\epsilon .
$$

Theorem
If f is continuous on $[a, b]$, then $f \in \mathfrak{R}(\alpha)$ on $[a, b]$.

Theorem

If f is bounded on $[a, b]$ with only finitely many points of discontinuity and α is continuous at each of f 's discontinuities, then $f \in \mathfrak{R}(\alpha)$ on $[a, b]$.

Properties of Riemann-Stieltjes Integrals

Proposition

Let f and $g \in \mathfrak{R}(\alpha)$ and in β on $[a, b]$ and $c \in \mathbb{R}$. Then

- $\int_{a}^{b} c f d \alpha=c \int_{a}^{b} f d \alpha \quad$ and $\quad \int_{a}^{b} f d(c \alpha)=c \int_{a}^{b} f d \alpha$
- $\int_{a}^{b}(f+g) d \alpha=\int_{a}^{b} f d \alpha+\int_{a}^{b} g d \alpha \quad$ and
$\int_{a}^{b} f d(\alpha+\beta)=\int_{a}^{b} f d \alpha+\int_{a}^{b} f d \beta$
- $f \cdot g \in \mathfrak{R}(\alpha)$
- if $f \leq g$, then $\int_{a}^{b} f d \alpha \leq \int_{a}^{b} g d \alpha$

Properties of Riemann-Stieltjes Integrals

Proposition

Let f and $g \in \mathfrak{R}(\alpha)$ and in β on $[a, b]$ and $c \in \mathbb{R}$. Then

- $\int_{a}^{b} c f d \alpha=c \int_{a}^{b} f d \alpha \quad$ and $\quad \int_{a}^{b} f d(c \alpha)=c \int_{a}^{b} f d \alpha$
- $\int_{a}^{b}(f+g) d \alpha=\int_{a}^{b} f d \alpha+\int_{a}^{b} g d \alpha \quad$ and
$\int_{a}^{b} f d(\alpha+\beta)=\int_{a}^{b} f d \alpha+\int_{a}^{b} f d \beta$
- $f \cdot g \in \mathfrak{R}(\alpha)$
- if $f \leq g$, then $\int_{a}^{b} f d \alpha \leq \int_{a}^{b} g d \alpha$
- $\left|\int_{a}^{b} f d \alpha\right| \leq \int_{a}^{b}|f| d \alpha$

Properties of Riemann-Stieltjes Integrals

Proposition
Let f and $g \in \mathfrak{R}(\alpha)$ and in β on $[a, b]$ and $c \in \mathbb{R}$. Then

- $\int_{a}^{b} c f d \alpha=c \int_{a}^{b} f d \alpha \quad$ and $\quad \int_{a}^{b} f d(c \alpha)=c \int_{a}^{b} f d \alpha$
- $\int_{a}^{b}(f+g) d \alpha=\int_{a}^{b} f d \alpha+\int_{a}^{b} g d \alpha \quad$ and
$\int_{a}^{b} f d(\alpha+\beta)=\int_{a}^{b} f d \alpha+\int_{a}^{b} f d \beta$
- $f \cdot g \in \mathfrak{R}(\alpha)$
- if $f \leq g$, then $\int_{a}^{b} f d \alpha \leq \int_{a}^{b} g d \alpha$
- $\left|\int_{a}^{b} f d \alpha\right| \leq \int_{a}^{b}|f| d \alpha$
- Suppose that $\alpha^{\prime} \in \mathfrak{R}$ and f is bounded. Then $f \in \mathfrak{R}(\alpha)$ iff $f \alpha^{\prime} \in \mathfrak{R}$ and

$$
\int_{a}^{b} f d \alpha=\int_{a}^{b} f \cdot \alpha^{\prime} d x
$$

Riemann-Stieltjes Integrals and Series

Proposition
If f is continuous at $c \in(a, b)$ and $\alpha(x)=r$ for $a \leq x<c$ and $\alpha(x)=s$ for $c<x \leq b$, then

$$
\begin{aligned}
\int_{a}^{b} f d \alpha & =f(c)(\alpha(c+)-\alpha(c-)) \\
& =f(c)(s-r)
\end{aligned}
$$

Proposition

Let $\alpha=\lfloor x\rfloor$, the greatest integer function. If f is continuous on $[0, b]$, then

$$
\int_{0}^{b} f(x) d\lfloor x\rfloor=\sum_{k=1}^{\lfloor b\rfloor} f(k)
$$

Riemann-Stieltjes Integrated Exercises

Exercises

1. $\int_{0}^{1} x d x^{2}$
2. $\int_{0}^{\pi / 2} \cos (x) d \sin (x)$
3. $\int_{0}^{5 / 2} x d(x-\lfloor x\rfloor)$
4. $\int_{-1}^{1} e^{x} d|x|$
5. $\int_{-3 / 2}^{3 / 2} e^{x} d\lfloor x\rfloor$
6. $\int_{-1}^{1} e^{x} d\lfloor x\rfloor$
7. Set H to be the Heaviside function; i.e.,

$$
H(x)= \begin{cases}0 & x \leq 0 \\ 1 & \text { otherwise }\end{cases}
$$

Show that, if f is continuous at 0 , then

$$
\int_{-\infty}^{+\infty} f(x) d H(x)=f(0)
$$

Lebesgue Integral

We start with simple functions.
Definition
A function has finite support if it vanishes outside a finite interval.

Definition
Let ϕ be a measurable simple function with finite support. If
$\phi(x)=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}(x)$ is a representation of ϕ, then

$$
\int \phi(x) d x=\sum_{i=1}^{n} a_{i} \cdot m\left(A_{i}\right)
$$

Definition
If E is a measurable set, then $\int_{E} \phi=\int \phi \cdot \chi_{E}$.

Integral Linearity

Proposition

If ϕ and ψ are measurable simple functions with finite support and $a, b \in \mathbb{R}$, then $\int(a \phi+b \psi)=a \int \phi+b \int \psi$. Further, if $\phi \leq \psi$ a.e., then $\int \phi \leq \int \psi$.
Proof (sketch).
I. Let $\phi=\sum^{N} \alpha_{i} \chi_{A_{i}}$ and $\psi=\sum^{M} \beta_{i} \chi_{B_{i}}$. Then show $a \phi+b \psi$ can
be written as $a \phi+b \psi=\sum^{K}\left(a \alpha_{k_{i}}+b \beta_{k_{j}}\right) \chi_{E_{k}}$ for the properly chosen E_{k}. Set A_{0} and B_{0} to be zero sets of ϕ and ψ. (Take $\left.\left\{E_{k}: k=0 . . K\right\}=\left\{A_{j} \cap B_{k}: j=0 . . N, k=0 . . M\right\}.\right)$
II. Use the definition to show $\int \psi-\int \phi=\int(\psi-\phi) \geq \int 0=0 . \quad \square$

Steps to the Lebesgue Integral

Proposition

Let f be bounded on $E \in \mathfrak{M}$ with $m(E)<\infty$. Then f is measurable iff

$$
\inf _{f \leq \psi} \int_{E} \psi=\sup _{f \geq \phi} \int_{E} \phi
$$

for all simple functions ϕ and ψ.

Steps to the Lebesgue Integral

Proposition

Let f be bounded on $E \in \mathfrak{M}$ with $m(E)<\infty$. Then f is measurable iff

$$
\inf _{f \leq \psi} \int_{E} \psi=\sup _{f \geq \phi} \int_{E} \phi
$$

for all simple functions ϕ and ψ.
Proof.
I. Suppose f is bounded by m. Define

$$
E_{k}=\left\{x: \frac{k-1}{n} M<f(x) \leq \frac{k}{n} M\right\}, \quad-n \leq k \leq n
$$

The E_{k} are measurable, disjoint, and have union E. Set

$$
\psi_{n}(x)=\frac{M}{n} \sum_{-n}^{n} k \chi_{E_{k}}(x), \quad \phi_{n}(x)=\frac{M}{n} \sum_{-n}^{n}(k-1) \chi_{E_{k}}(x)
$$

SLI (cont)

(proof cont).

Then $\phi_{n}(x) \leq f(x) \leq \psi(x)$, and so

- $\inf \int_{E} \psi \leq \int_{E} \psi_{n}=\frac{M}{n} \sum_{k=-n}^{n} k m\left(E_{k}\right)$
- $\sup \int_{E} \phi \geq \int_{E} \phi_{n}=\frac{M}{n} \sum_{k=-n}^{n}(k-1) m\left(E_{k}\right)$

Thus $0 \leq \inf \int_{E} \psi-\sup \int_{E} \phi \leq \frac{M}{n} m(E)$. Since n is arbitrary, equality holds.
II. Suppose that $\inf \int_{E} \psi=\sup \int_{E} \phi$. Choose ϕ_{n} and ψ_{n} so that $\phi_{n} \leq f \leq \psi_{n}$ and $\int_{E}\left(\psi_{n}-\phi_{n}\right)<\frac{1}{n}$. The functions $\psi^{*}=\inf \psi_{n}$ and $\phi^{*}=\sup \phi_{n}$ are measurable and $\phi^{*} \leq f \leq \psi^{*}$. The set $\Delta=\left\{x: \phi^{*}(x)<\psi^{*}(x)\right\}$ has measure 0 . Thus $\phi^{*}=\psi^{*}$ almost everywhere, so $\phi^{*}=f$ a.e. Hence f is measurable.

Example Steps

Example

Defining the Lebesgue Integral

Definition
If f is a bounded measurable function on a measurable set E with $m(E)<\infty$, then

$$
\int_{E} f=\inf _{\psi \geq f} \int_{E} \psi
$$

for all simple functions $\psi \geq f$.

Defining the Lebesgue Integral

Definition
If f is a bounded measurable function on a measurable set E with $m(E)<\infty$, then

$$
\int_{E} f=\inf _{\psi \geq f} \int_{E} \psi
$$

for all simple functions $\psi \geq f$.
Proposition
Let f be a bounded function defined on $E=[a, b]$. If f is
Riemann integrable on $[a, b]$, then f is measurable on $[a, b]$ and

$$
\int_{E} f=\int_{a}^{b} f(x) d x
$$

the Riemann integral of f equals the Lebesgue integral of f.

Properties of the Lebesgue Integral

Proposition
If f and g are measurable on E, a set of finite measure, then

- $\int_{E}(\alpha f+\beta g)=\alpha \int_{E} f+\beta \int_{E} g$
- if $f=g$ a.e., then $\int_{E} f=\int_{E} g$
- if $f \leq g$ a.e., then $\int_{E} f \leq \int_{E} g$
- $\left|\int_{E} f\right| \leq \int_{E}|f|$
- if $a \leq f \leq b$, then $a \cdot m(E) \leq \int_{E} f \leq b \cdot m(E)$
- if $A \cap B=\emptyset$, then $\int_{A \cup B} f=\int_{A} f+\int_{B} f$

Proof.
Exercise.

Lebesgue Integral Examples

Examples

1. Let $D(x)=\left\{\begin{array}{ll}\frac{1}{q} & x=\frac{p}{q} \in \mathbb{Q} \\ 0 & \text { otherwise }\end{array}\right\}$. Then $\int_{[0,1]} D=\int_{0}^{1} D(x) d x$.
2. Let $\chi_{\mathbb{Q}}(x)=\left\{\begin{array}{ll}1 & x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{array}\right\}$. Then $\int_{[0,1]} \chi_{\mathbb{Q}} \neq \int_{0}^{1} \chi_{\mathbb{Q}}(x) d x$.
3. Define

$$
\left.f_{n}(x)=\sum_{k=1}^{n+1}\left(\frac{k-1}{k} \cdot \chi_{\left[\frac{k-1}{k}, \frac{k}{k+1}\right)}(x)\right)+\frac{n}{n+1} \chi_{[n+1}^{n+2}, 1\right][\text {. }
$$

Then
$3.1 f_{n}$ is a step function, hence integrable $3.2 f_{n}^{\prime}(x)=0$ a.e.
$3.3 \frac{1}{4} \leq \int_{[0,1]} f_{n}=\int_{0}^{1} f_{n}(x) d x<\frac{3}{8}$

Extending the Integral Definition

Definition

Let f be a nonnegative measurable function defined on a measurable set E. Define

$$
\int_{E} f=\sup _{h \leq f} \int_{E} h
$$

where h is a bounded measurable function with finite support.
Proposition
If f and g are nonnegative measurable functions, then

- $\int_{E} c f=c \int_{E} f$ for $c>0$
- $\int_{E} f+g=\int_{E} f+\int_{E} g$
- If $f \leq g$ a.e., then $\int_{E} f \leq \int_{E} g$

Proof.
Exercise.

General Lebesgue's Integral

Definition
Set $f^{+}(x)=\max \{f(x), 0\}$ and $f^{-}(x)=\max \{-f(x), 0\}$. Then $f=f^{+}-f^{-}$and $|f|=f^{+}+f^{-}$. A measurable function f is integrable over E iff both f^{+}and f^{-}are integrable over E, and then $\int_{E} f=\int_{E} f^{+}-\int_{E} f^{-}$.

Proposition

Let f and g be integrable over E and let $c \in \mathbb{R}$. Then

1. $\int_{E} c f=c \int_{E} f$
2. $\int_{E} f+g=\int_{E} f+\int_{E} g$
3. if $f \leq g$ a.e., then $\int_{E} f \leq \int_{E} g$
4. if A, B are disjoint ${ }^{\text {m'ble }}{ }_{E}$ subsets of $E, \int_{A \cup B} f=\int_{A} f+\int_{B} f$

Convergence Theorems

Theorem (Bounded Convergence Theorem)
Let $\left\{f_{n}: E \rightarrow \mathbb{R}\right\}$ be a sequence of measurable functions converging to f with $m(E)<\infty$. If there is a uniform bound M for all f_{n}, then

$$
\int_{E} \lim _{n} f_{n}=\lim _{n} \int_{E} f_{n}
$$

Convergence Theorems

Theorem (Bounded Convergence Theorem)

Let $\left\{f_{n}: E \rightarrow \mathbb{R}\right\}$ be a sequence of measurable functions converging to f with $m(E)<\infty$. If there is a uniform bound M for all f_{n}, then

$$
\int_{E} \lim _{n} f_{n}=\lim _{n} \int_{E} f_{n}
$$

Proof (sketch).
Let $\epsilon>0$.

1. f_{n} converges "almost uniformly;" i.e., $\exists A, N$ s.t. $m(A)<\frac{\epsilon}{4 M}$ and, for $n>N, x \in E-A \Longrightarrow\left|f_{n}(x)-f(x)\right| \leq \frac{\epsilon}{2 m(E)}$.
2. $\left|\int_{E} f_{n}-\int_{E} f\right|=\left|\int_{E} f_{n}-f\right| \leq \int_{E}\left|f_{n}-f\right|=\left(\int_{E-A}+\int_{A}\right)\left|f_{n}-f\right|$
3. $\int_{E-A}\left|f_{n}-f\right|+\int_{A}\left|f_{n}\right|+|f| \leq \frac{\epsilon}{2 m(E)} \cdot m(E)+2 M \cdot \frac{\epsilon}{4 M}=\epsilon \square$

Lebesgue's Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)

Let $\left\{f_{n}: E \rightarrow \mathbb{R}\right\}$ be a sequence of measurable functions converging a.e. on E with $m(E)<\infty$. If there is an integrable function g on E such that $\left|f_{n}\right| \leq g$ then

$$
\int_{E} \lim _{n} f_{n}=\lim _{n} \int_{E} f_{n}
$$

Lebesgue's Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)

Let $\left\{f_{n}: E \rightarrow \mathbb{R}\right\}$ be a sequence of measurable functions converging a.e. on E with $m(E)<\infty$. If there is an integrable function g on E such that $\left|f_{n}\right| \leq g$ then

$$
\int_{E} \lim _{n} f_{n}=\lim _{n} \int_{E} f_{n}
$$

Lemma
Under the conditions of the DCT, set $g_{n}=\sup \left\{f_{n}, f_{n+1}, \ldots\right\}$
and $h_{n}=\inf _{k \geq n}\left\{f_{n}, f_{n+1}, \ldots\right\}$. Then g_{n} and h_{n} are integrable and $\lim g_{n}=f=\lim h_{n}$ a.e.

Lebesgue's Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)

Let $\left\{f_{n}: E \rightarrow \mathbb{R}\right\}$ be a sequence of measurable functions converging a.e. on E with $m(E)<\infty$. If there is an integrable function g on E such that $\left|f_{n}\right| \leq g$ then

$$
\int_{E} \lim _{n} f_{n}=\lim _{n} \int_{E} f_{n}
$$

Lemma
Under the conditions of the DCT, set $g_{n}=\sup \left\{f_{n}, f_{n+1}, \ldots\right\}$

$$
k \geq n
$$

and $h_{n}=\inf _{k \geq n}\left\{f_{n}, f_{n+1}, \ldots\right\}$. Then g_{n} and h_{n} are integrable and $\lim g_{n}=f=\lim h_{n}$ a.e.

Proof of DCT (sketch).

- Both g_{n} and h_{n} are monotone and converging. Apply MCT.
- $h_{n} \leq f_{n} \leq g_{n} \Longrightarrow \int_{E} h_{n} \leq \int_{E} f_{n} \leq \int_{E} g_{n}$. \square

Increasing the Convergence

Theorem (Fatou's Lemma)
If $\left\{f_{n}\right\}$ is a sequence of measurable functions converging to f a.e. on E, then

$$
\int_{E} \lim _{n} f_{n} \leq \liminf _{n} \int_{E} f_{n}
$$

Increasing the Convergence

Theorem (Fatou's Lemma)
If $\left\{f_{n}\right\}$ is a sequence of measurable functions converging to f a.e. on E, then

$$
\int_{E} \lim _{n} f_{n} \leq \liminf _{n} \int_{E} f_{n}
$$

Theorem (Monotone Convergence Theorem) If $\left\{f_{n}\right\}$ is an increasing sequence of nonnegative measurable functions converging to f, then

$$
\int \lim _{n} f_{n}=\lim _{n} \int f_{n}
$$

Increasing the Convergence

Theorem (Fatou's Lemma)

If $\left\{f_{n}\right\}$ is a sequence of measurable functions converging to f a.e. on E, then

$$
\int_{E} \lim _{n} f_{n} \leq \liminf _{n} \int_{E} f_{n}
$$

Theorem (Monotone Convergence Theorem)
If $\left\{f_{n}\right\}$ is an increasing sequence of nonnegative measurable functions converging to f, then

$$
\int \lim _{n} f_{n}=\lim _{n} \int f_{n}
$$

Corollary (Beppo Levi Theorem (cf.))
If $\left\{f_{n}\right\}$ is a sequence of nonnegative measurable functions, then

$$
\int \sum_{n=1}^{\infty} f_{n}=\sum_{n=1}^{\infty} \int f_{n}
$$

Sidebar: Littlewood's Three Principles

John Edensor Littlewood said,

The extent of knowledge required is nothing so great as sometimes supposed. There are three principles, roughly expressible in the following terms:

- every measurable set is nearly a finite union of intervals;
- every measurable function is nearly continuous;
- every convergent sequence of measurable functions is nearly uniformly convergent.
Most of the results of analysis are fairly intuitive applications of these ideas.

From Lectures on the Theory of Functions, Oxford, 1944, p. 26.

Extensions of Convergence

The sequence f_{n} converges to $f \ldots$
Definition (Convergence Almost Everywhere) almost everywhere if $m\left(\left\{x: f_{n}(x) \nrightarrow f(x)\right\}\right)=0$.

Definition (Convergence Almost Uniformly) almost uniformly on E if, for any $\epsilon>0$, there is a set $A \subset E$ with $m(A)<\epsilon$ so that f_{n} converges uniformly on $E-A$.

Definition (Convergence in Measure) in measure if, for any $\epsilon>0, \lim _{n \rightarrow \infty} m\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=0$.

Definition (Convergence in Mean (of order $p>1$))
in mean if $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=\lim _{n \rightarrow \infty}\left[\int_{E}\left|f-f_{n}\right|^{p}\right]^{1 / p}=0$

Integrated Exercises

Exercises

1. Prove: If f is integrable on E, then $|f|$ is integrable on E.
2. Prove: If f is integrable over E, then $\left|\int_{E} f\right| \leq \int_{E}|f|$.
3. True or False: If $|f|$ is integrable over E, then f is integrable over E.
4. Let f be integrable over E. For any $\epsilon>0$, there is a simple (resp. step) function ϕ (resp. ψ) such that $\int_{E}|f-\phi|<\epsilon$.
5. For $n=k+2^{\nu}, 0 \leq k<2^{\nu}$, define $f_{n}=\chi_{\left[k 2^{-\nu},(k+1) 2^{-\nu}\right]}$.
5.1 Show that f_{n} does not converge for any $x \in[0,1]$.
5.2 Show that f_{n} does not converge a.e. on $[0,1]$.
5.3 Show that f_{n} does not converge almost uniformly on $[0,1]$.
5.4 Show that $f_{n} \rightarrow 0$ in measure.
5.5 Show that $f_{n} \rightarrow 0$ in mean (of order 2).

References

Texts on analysis, integration, and measure:

- Mathematical Analysis, T. Apostle
- Principles of Mathematical Analysis, W. Rudin
- Real Analysis, H. Royden
- Lebesgue Integration, S. Chae
- Geometric Measure Theory, F. Morgan

Comparison of different types of integrals:

- Integral, Measure, and Derivative: A Unified Approach, G. Shilov and B. Gurevich

[^0]: ${ }^{1}$ Even the first 3 are impossible assuming the continuum hypothesis.

