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“Riemann, We Have a Problem.”

There are problems with Riemann integration.

1 if
1. Define Dirichlet’s function (1829) D(z) = "o e Q .
0 otherwise
Then D(x) dz does not exist.
[0,1]
2nx 0 <z<s.
2. Set fo(z) = ¢ 2n(1—na) o <z <2i.Then
0 otherwise

/ lim f,(z)dx # lim fu(z)da.
[071} n—oo

Enter Henri Lebesgue in 1902.




A Bad Sequence of Functions

Example

0

3 2n%r 0<a
ful2) = 2n(1 — nx) ﬁ <3
0 1<

» Find [ f,, lim, [f,, lim, f,, and [lim, f,.

Toward a Unit of Measure

Definition
The length of an interval in R! is the difference of the endpoints
and is given by £([a,b]) = b — a.

Goal: To have a set-function m : M — R that “measures” the
“size” of a set where m ideally satisfies:

1. M = P(R); id est, every set can be measured.

2. For every interval I, open or closed or not, m(I) = ¢(I).

3. Ifthe sequence {E,} is disjoint, then m(|J E,,) = > m(E,).

4. m is translation invariant; i.e., m(E + z) = m(E) for every
E andany z € R.

Unfortunately, this is impossible.! We give up the first and allow
sets not to be in the class of measurable sets, M C P(R).

"Even the first 3 are impossible assuming
the

o-Algebra of Sets

Definition
Let A be a collection of sets. Then A is an algebra of sets or a
Boolean algebra iff

» if Ae A, then A° € A,

» if A,Be A then AUB € A.
De Morgan’s laws imply that if A, B € A, then An B € A. Then
we also have ) € Aand X € A.

Definition

Let A be an algebra of sets. Then A is a o-algebra of sets or
Borel field iff for every countable sequence {A4;} of sets from A,
we have |J 4; € A.

De Morgan’s laws imply that countable intersections stay in A.

Theorem
There is a smallest o-algebra containing any collection of sets.

Sidebar: Borel Sets

Definition
The Borel o-algebra on R is the smallest o-algebra containing
g, all of the open sets in R, and is denoted by B(R).

Proposition

The Borel o-algebra B(R) is (also) generated by each of:
» F = {all closed sets in R}
> {(—o00,b]:beR}
» {(a,b] : a,b € R}

Proposition

LetSs ={NSi:S; € S}andS, ={JS;:S; € S}. Then
GC G5 C G50 S Gs06 &
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Countably Additive Measure

Definition
A countably additive measure is a set function m such that

» m is a non-negative extended real-valued function on a
o-algebra M of subsets of R; that is, m : MM — [0, oo].

» m(UE,) =), m(E,) for any sequence of disjoint subsets.

Exercises
Let m be a countably additive measure on the o-algebra 9.

1. If A and B are in M with A C B, then m(A) < m(B).

2. Ifthere is a set A € M with m(A) < oo, then m(0) = 0.

3. Show that m is countably subadditive or that for any
sequence of sets, m(|J E,) <> m(Ey). (vt 5, = A, — U )

4. Letn be the counting measure, the number of elements in
a set. Show that n satisfies Goals 1, 3, and 4.

Outer Measure

Definition
The outer measure of A is

where I, is open and |J I,, covers A with a countable union.

Proposition
The outer measure of an interval is its length or m*(I) = ¢(I).

Proof.

I. I =[a,b]. (a) Since [a,b] C (a —€,b+€), then m*(I) < b — a.
(b) : we need only consider finite covers. Work
with the finite cover to show Y ¢(I,,) > b — a.

Il. Any finite interval I. There is a closed interval J C I such
that ¢(1) — e < 4(J) = m*(J) < m*(I) < m*(I) = {(I).

[ll. Any infinite interval. v/ O]

Outer Measure is Countably Subadditive

Theorem
Let {A,} be a countable collection of subsets of R. Then

m* (U An> < Zm*(An)
Proof. ! !

“Wolog” all A,,’s have finite outer measure. For each A, there is
a countable collection of open intervals {I,, ;} covering A, such

that
> Ulng) < M (An) + 57
The set {I,,; : n,i € N} covers | J A,,. Thence

m (U An) < Zé(fn,i) = zﬂ: ZM’”) <> (m*(An) + 2%)

n

Measured Exercises

Exercises

—_

. If A is a countable set, then m*(A) = 0.
The closed interval [0, 1] is not countable.

Show that m*(Q N [0,1]) = 0 and m*(Q) = 0.

w0 N

LetA=QnNJ0,1) and let{I, : n = 1..N} be a finite
collection of open intervals covering A. Then_ ((1I,) > 1.

o

Reconcile 1. through 4.

6. Given any set A and any € > 0, there is an open set G
such that A C G and m*(G) < m*(A) +e.
(Confer “ )

7. Why is m* translation invariant?




Lebesgue Measure

Lebesgue outer measure m* satisfies goals 1, 2, and 4, but not
goal 3, countable additivity; m* is only countably subadditive.
We can gain countable additivity by giving up goal 1 and
reducing the collection 9t of sets; there will be sets that can’t
be measured. This approach is not without difficulties, though.
The existence of nonmeasurable sets? leads to problems such
as which yields a method of decomposing the
interval [0, 1] into a set of measure 2. (Also see the

)
We will use the definition of a set being measurable that was
given by

2See “ _set” for an intuitive
explanation.

Measurable Sets

Definition
The set E is measurable iff for each set A we have

m*(A) =m*(ANE)+m*(An E°).

Proposition
If E is measurable, then then E° is measurable.

Proposition
Ifm*(E) = 0, then E is measurable.

Proof.
Let A be any set. Then AN E C E implies m* (AN E) < m*(E).
Hence m*(ANE) =0.Now AN E° C A, so

m*(A) > m*(ANE°) =m*(ANE) +m*(AN E°). O

Properties of “Measurable”

Proposition
If E1 and E5 are measurable, then so is E1 U Es.

Proof.
Let A be any set. Since E; € 91, then
m*(ANES) =m*((AN EY) N Es) +m*((AN ES) N ES).
From AN (E1 U Ey) = (AN E1) U (AN Ex N ES), we see that
m*(AN(E1 U Ey)) <m*(AN E1) + m*(AN Ey N EY)
So
m (AN (E1 U EQ)) +m* (AN (E1 U EQ)C)
<m*(ANE) +m* (AN EyNEY) +m* (AN (E1 U Ey)°)
=m*(ANEy) +m* (AN EY) =m*(A)

Proposition O
M is an algebra of sets.

A Bigger “Measurable” Cup

Proposition
Let A be any set and E1, E», ..., Enx be a finite sequence of
disjoint measurable sets. Then

N
m” (Aﬂ ) :Zm*(AﬂEi)
i=1
Proof.

n
Induction on n with (A N U EZ-> NE,=ANE, and

(A n Lnj E¢> NES=AN (U’H El> . 0

N

U~

i=1




A Countable “Measurable” Cup

Proposition
Let Eq, Es, ... be a countable sequence of measurable sets.
Then E = J;2, E; is measurable.

Proof.
Wolog the E; are pairwise disjoint. (Otherwise define B;
= E;— U/Z| E;.) Let A be any set and set F,, = |J_, E;. Then

F,eMand FS D E. Thenm*(ANF,) =>" , m" (AN E;).
Hence, since n is arbitrary and m*(A) is independent of n,

m*(A) > Zm*(AmEi)er*(AmEc) >m*(ANE)+m*(ANE")
=1

Proposition -

M is a o-algebra of sets.

The Lebesgue Measure m.

Definition
Define Lebesgue measure to be the restriction m = m*|gy.

Theorem
The Borel sets are Lebesgue measurable.

Theorem
Let E be a setand lete > 0. TFAE:
1. E is Lebesgue measurable
2. thereis an open set E C G such thatm*(G — E) < €

3. thereis a closed set ' C E such thatm*(E — F) < e
4. thereisa G € Gs suchthat E C G and m*(G— E)=0
5. thereisan F € F, suchthatFF C E andm*(E — F) =0

Measure Zero

Definition
A set S C R has measure zero if and only if m(S) = 0; i.e., for
any e > 0 there is an open cover C = {G}, | k € N} of S such

that Zm(Gk) < e
keN

Example

1. Any finite set (countable set) has measure zero.
2. Every interval [a, ] is not measure zero (when a < b).

The length of [0,1] is 1. The rationals contained in [0, 1] have
measure zero. What is the measure of the irrationals in [0, 1]?
Definition (A.E.)

A property that holds for all =z except on a set of measure zero
is said to hold almost everywhere.

Sidebar: Q Is Small

Theorem
The rationals are countable.

Proof.
Let Q be the set of rational numbers. The array below shows a
method of enumerating all elements of Q.

/23 2/26) 3/2) 4/202
1/36) 2/319) 3/3a3) 4/3as)
/dao) 2/404) 3/419) 4/4@2s)

Since each rational is counted, we have |Q| < |N| where we
use | - | to indicate cardinality (or size). But we know that
N C Q, so that |N| < |Q|. Hence |Q| = |N]|. O




Covering Q

Theorem
The set of rationals has measure zero.

Proof.

Lete > 0. List the rationals in order Q = {ry,74,73,... } as given
by the “countability matrix” defined earlier. For each rational ry,,
define the open interval I, = (rj, — ¢/2¥+1 vy, 4+ ¢/2F1). Then

» the collection C = {I | k € N} forms an open cover of Q,
» the length of each I, is m(I;,) = ¢/2%.
Then m(Q) < m(C) which is

m(Q) <m(C) =) m(l) = Ze/Qk = GZ o =
k=1

k=1 |

Measurable Functions

Proposition (measurability condition)

Let f be an extended real-valued function on a measurable
domain D. Then TFAE:

1. Foreach a € R, the set {x :

2. Foreacha € R, the set {z :

3. Foreacha € R, the set{x :

4. Foreach a € R, the set {x :
These imply

5. Foreach 8 € Ry, the set{x : f(xz) = B} is measurable.

(z) > a} is measurable.
(x) > o} is measurable.
(x) < o} is measurable.
(x) < «a} is measurable.

f
flz
f
f

T

Proof.

(1) = @2){z: f(x) = a} =z f(z) > a—1/n}

(2) = @) {z: fle) <a}=D—{z: f(z) = a}

3) = @) {z: f(x) <a}=Vz: f(zx) <a+1/n}

(4) = (L) {z: f(z)>at =D —{z: f(z) < a}

(x.) = (5.) Exercise. (2 cases: § < ocoand = +0.) O

Definition of a Measurable Function

Definition
Let D be measurable. Then f: D — R, is measurable iff f
satisfies the measurability condition.

Proposition
Let f and g be measurable (real-valued) functions defined on D
andcecR. Then f +c, cf, f g, f?, and fg are measurable.

Proof (sketch).

(f+ccf):Use{z: f(x) +ec<a}={z: f(x) < a—c},etc.
(f+9):If f(z)+9g(z) <a,thereisanr € Q (r = r(a) # r(x))
such that f( ) <r<a-—g(z). Thus

{z: f(z)+g(x) <a}l= U{x ) <rin{z:glz)<a-r})
is a countable union of measurable sets, hence is measurable.

(f3): Use {z: f*(x)>a}={z: f(x)>Va}U{z: f(z)<-ya}.
(fg): Use fg=L(f+9) - 3(f — 9% O

Sequences of Measurable Functions

Theorem
Let{f,} be a sequence of measurable functions on a common
domain D. Then the functions

sup{f1,..., fn}, Supfn, 1imbupfn
are measurable. Analogous statements ho/d for inf and lim inf .

Proof.
Set h = sup{f1,..., fa}, then
{z:h(z) >a} = U{m s fi(z) > al.
i=1
Hence h is measurable. Now set g = sup,, f», then

{e:g9(2) > a} = Jfa: file) > a}.
=1
Hence g is measurable. Combine the above with the definition

lim sup fn= mf sup [ to finish. O
k>n




‘Simple’ Functions are Measurable

Proposition
If f is measurable and g = f a.e., then g is measurable.

Proof.

Set E={xz: f(z) # g(z)}. Then m(E) = 0. So {z : g(z) > a}
={z:f(zx)>a}lU{zeE:gx)>a}l—{zecE:g(x)<a}. O
Definition

A measurable real-valued function ¢ is simple if it assumes only
finitely many values. Then

o(z) = ZakXAk (x) where Ap={z:¢(x)=ar}
k=1

If each A, is an interval, then ¢ is called a step function.

Measurable Functions are ‘Simple’

Proposition

Let f:[a,b] — Ry be measurable such that m({f(x)= +oo}) is
zero. Given € > 0, there is a step function s and a continuous
function h so that |f — s| < eand|f — h| < e a.e.

Proof (Exercise).

1. There is an M such that | f| < M except on a set of
measure < ¢/3.

2. There is a simple function ¢ such that |f — ¢| < € except
when |f| > M. (Hint: (M — ~M) < n-¢.)

3. There is a step function ¢ such that g = ¢ except on a set
of measure < ¢/3. (Hint: look here.)

Example . ) .
N2 4. There is a continuous function h such that h = g except on
> s(z) :; N2 x[%%](x) is a step function; xq is simple. a set of measure < ¢/3. (Hint: think like a ) o
Functionally Measured Exercises Integration

Exercises

1. Let ¢1 and ¢2 be simple functions and ¢ € R. Show that
a. c¢ is a simple function,
b. ¢1 + ¢2 is a simple function,
C. ¢1 - ¢2 is a simple function.

2. For a set S define the characteristic or indicator function to

1
be xs(x) = { re g . Show that

0 z¢

a. XAnB = XA " XB;
b. XAuB = XA+ XB — XA XB-
C. XAc:].—XA.

3. Let D be a dense set of real numbers; i.e., every interval
contains an element of D. Let f be an extended real-
valued function on R such that for any d € D, the set
{z : f(z) > d} is measurable. Then f is measurable.

We began by looking at two examples of integration problems.

» The Riemann integral over [0, 1] of a function with infinitely
many discontinuities didn’t exist even though the points of
discontinuity formed a set of measure zero.

(The points of discontinuity formed a dense set in [0, 1].)

» The limit of a sequence of Riemann integrable functions did
not equal the integral of the limit function of the sequence.
(Each function had area /2, but the limit of the sequence
was the zero function.)

We will look at Riemann integration, then Riemann-Stieltjes
integration, and last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy,
Gauge, Perron, etc. See the list given in the “See also” section
of on Mathworld.




Riemann Integral

Definition

» A partition P of [a, b] is a finite set of points such that
P={a=xo<x1 < - <xp_1 <z =0}

» Set M; = sup f(x) on [x;_1,z;]. The upper sum of f on
[a,b] w.r.t. P is

UP,f) =Y M- Az
=1
» The upper Riemann integral of f over [a,b] is
b
/ () dr = inf U(P. f)

Exercise

1. Define the lower sum L(P, f) and the lower integral [% f.

Definitely a Riemann Integral

Definition
If [ f(x)dx = [2f(x)dz, then f is Riemann integrable and is
written as fabf(x) dz and f € R on [a,b].

Proposition

A function f is Riemann integrable on [a, b] if and only if for

every e > 0 there is a partition P of [a, b] such that
UP,f)—L(P,f) <e

Theorem
If f is continuous on [a, b], then f € R on [a, b].

Theorem
If f is bounded on [a, blwith only finitely many points of discont-
inuity, then f € % on [a, b].

Properties of Riemann Integrals

Proposition
Let f and g € | on[a,b] andc € R. Then

> f;cfdx:cfffdx

> ff(f—kg)d:c:f;fdm—&—f;gdx
> frgeR
> if f <g,then [* fdx < [’ gdx

> |J) pde| < [ 111 da

» Define F(x) = [" f(t)dt. Then F is continuous and, if f is
continuous at o, then F'(xo) = f(x0)

> IfF' = f on|[a,b], then [* f(z)dx = F(b) — F(a)

Riemann Integrated Exercises

Exercises
1. If [ f(x)|dx = 0, then f = 0.

2. Show why [ xq(z) da does not exist.
3. Define

n+1 . n
Su@) =S ("’kl X[t )(x)> oy (@),

==
k=1

3.1 How many discontinuities does S,, have?
3.2 Prove that S, (z) =0 a.e.

3.3 Calculate fol Sy (z) dz.

3.4 Whatis S ?

3.5 Does fol Seo () dz exist?

(See an animated graph of Sy.)




Riemann-Stieltjes Integral

Definition
» Let a(z) be a monotonically increasing function on [a, b].
Set Aa; = ax;) — azi—1).
» Set M; = sup f(x) on [x;_1,x;]. The upper sum of f on
[a,b] w.rt. aoand P is

UP, f,) =Y M- Aa
i=1

» The upper Riemann-Stieltjes integral of f over [a,b] w.rt. «
is

b
/ () da(a) = inf U(P, f.0)

Exercise

1. Define the lower sum L(P, f,«) and lower integral |, bfda.

Definitely a Riemann-Stieltjes Integral

Definition
If fff da = [bfda, then f is Riemann-Stieltjes integrable and

is written as f; f(z)da(z) and f € R(a) on [a,b].

Proposition
A function f is Riemann-Stieltjes integrable w.r.t. « on [a, b] iff
for every € > 0 there is a partition P of [a, b] such that

U, f,a)— L(P, f,a) <e.

Theorem
If f is continuous on [a,b], then f € R(«) on [a, b].

Theorem

If f is bounded on [a, b]with only finitely many points of discont-
inuity and « is continuous at each of f’s discontinuities, then

f € R(a) ona,b).

Properties of Riemann-Stieltjes Integrals

Proposition
Let f and g € R(«a) andin § on [a,b] and ¢ € R. Then
> f;cfda:cf;fda and fabfd(ca):cf:fda
> [Y(f+g)da=["fda+ [Pgda and
Jo fdla+ )= [} fda+ [} fdp
> frg€R(a)
» iff <g, thenf;’fdagffgda

> |1 fda| < [71f]da

» Suppose that o’ € R and f is bounded. Then f € R(a) iff

fo' € R and
b b
/fda:/f~o/dx

Riemann-Stieltjes Integrals and Series

Proposition
If f s continuous at c € (a,b) and o(z) = r fora < xz < ¢ and
a(z) =sforc <z <b, then

b
/ fda = £(¢) (a(c+) — alc—)
— F(0) (s —7)
Proposition

Let o = |z |, the greatest integer function. If f is continuous on
[0,0], then o]

b
/0 f@ydle] =Y fh)

k=1




Riemann-Stieltjes Integrated Exercises

Exercises
1. [y @ da? 4. [ evdjz|
2. [T cos(x) dsin(z) 5. [, evd|x]
3. [P ed(x—|x)) 6. [ e"d|z]
7. Set H to be the Heaviside function; i.e.,
H(z) = {(1) zﬂfe?'wise'

Show that, if f is continuous at 0, then

+oo
| @ = fo).

—0Q0

Lebesgue Integral

We start with simple functions.

Definition
A function has finite support if it vanishes outside a finite
interval.

Definition
Let ¢ be a measurable simple function with finite support. If

o) = Z a;x a,(z) is a representation of ¢, then
i=1

/¢(x) dx = Zai -m(A4;)
i=1

Definition
If £ is a measurable set, then / ¢ = /¢ “XE-
E

Integral Linearity

Proposition
If ¢ and ) are measurable simple functions with finite support

anda,b € R, then /(a¢+ by) = a/¢>+b/1/1. Further,
ifp <1 a.e., then /d) S/z/).
Proof (sketch).
N M
l.Let ¢ = > aixa, and+ =Y Bixs,. Then show a¢ + by can
K

be written as a¢ + by = Y (aay, + bB,)x s, for the properly
chosen Ey. Set Ay and By to be zero sets of ¢ and . (Take
{Ek k= OK} = {AJ NBr:j7=0.Nk= OM})

Il. Use the definition to show [¢— [¢ = [(v—¢) > [0=0. [

Steps to the Lebesgue Integral

Proposition
Let f be bounded on E € 9 withm(E) < co. Then f is

measurable iff
inf =s
i fo=sw [ o

for all simple functions ¢ and 1.

Proof.
I. Suppose f is bounded by m. Define

-1 k
Ek:{;v:kM<f(;v)<M}7 —n<k<n
n n

The E}, are measurable, disjoint, and have union E. Set

Un(e) = T3 kX (@), on() = Sk 1) @)




SLI (cont)

(proof cont)

Then ¢, (z) < ) < (x), and SO
>1nf/¢</wnf% m(E)
M
vow [ 62 [ 60=L 5 (k- Dym(z)
foz o=t 20

Thus 0 < inf [, 4 —sup fE qs < ;m(E). Since n is arbitrary,
equality holds.

Il. Suppose that inf [}, 1) = sup [, . Choose ¢, and v, so that
¢n < f < tpand [ (¢n — ¢n) < L. The functions ¢* = inf ¢,
and ¢* = sup ¢,, are measurable and ¢* < f < ¢*. The set

A ={z: ¢*(z) < ¢*(x)} has measure 0. Thus ¢* = ¢b* almost

everywhere, so ¢* = f a.e. Hence f is measurable. |

Example Steps

Example

T
T

Defining the Lebesgue Integral

Definition
If f is a bounded measurable function on a measurable set £

with m(E) < oo, then
= inf
IREETR

for all simple functions ¢ > f.

Proposition
Let f be a bounded function defined on E = [a,b]. If f is
Riemann integrable on [a, b], then f is measurable on [a,b] and

f= [ )
L=

the Riemann integral of f equals the Lebesgue integral of f.

Properties of the Lebesgue Integral

Proposition
If f and g are measurable on E, a set of finite measure, then

> [arvpn=af 15[

> iff:ga.e.,then/f:/g
E E
>iff§ga.e.,then/f§/g
FE FE
> ‘/ f‘g/ |1
E E
>ifa§f§b,thena'm(E)§/f§b~m(E)
E
» ifANB =0, then fz/f+/f
AUB A B
Proof.
Exercise.




Lebesgue Integral Examples

Examples
1 _p 1
1 LetD(@)=Ja “TacC .Then/ D:/ D(z) dx.
0 otherwise [0,1] 0
1 z€Q / 1
2. Let = . Then z)dx.
xo(@) {0 otherwise} [0,1]XQ ? 0 xal)
3. Define
Langyg T | n
fa(z) = ; (k : X[’“;l,ﬁl)(m)> X ()
Then

3.1 f, is a step function, hence integrable
3.2 fl(z)=0a.e.

331< f—/lf(ﬂc)dar<§
e R TR [ 8

Extending the Integral Definition

Definition
Let f be a nonnegative measurable function defined on a
measurable set E. Define

/ f= sup/ h
E h<fJE
where h is a bounded measurable function with finite support.

Proposition
If f and g are nonnegative measurable functions, then

>[ch=c/Efforc>0
>/Ef+g=[Ef+/Eg

>Iff§ga.e.,then/f§/g
E E

Proof.
Exercise. O

General Lebesgue’s Integral

Definition

Set f*(z) = max{f(z),0} and f~(x) = max{—f(z),0}. Then
f=f"—=fand|f| = f" + f~. A measurable function f is
integrable over E iff both ™ and f~ are integrable over E, and

then/Ef:[Eer—/Ef‘.

Proposition
Let f and g be integrable over E and let c € R. Then

1./ch:c/Ef
2./Ef+g:/Ef+/Eg

3. iffgga.e.,then/fg/g
E E
4. if A, B are disjoint m’ble subsets ofE,/ f:/f+/f
AUB A B

Convergence Theorems

Theorem (Bounded Convergence Theorem)

Let{f, : E — R} be a sequence of measurable functions
converging to f with m(E) < co. If there is a uniform bound M

for all f,,, then
/ lim f, = lim/ fn
E " " JE

Proof (sketch).
Lete > 0.

1. f. converges “almost uniformly;” i.e., 3A, N s.t. m(A) < ﬁ
€

and,forn >N,z € E— A = |fu(z) — f(2)| € ——

m(E)
L= [ = [n=t]< [in==([ +[)ir-s

€ €
3. /7A\fn—f|+/A|fn|+|f\ < o () -m(E)+2M~m:e .

2.




Lebesgue’s Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)

Let{f, : E — R} be a sequence of measurable functions
converging a.e. on E with m(E) < co. If there is an integrable
function g on E such that |f,| < g then

/limfn:lim/ I
E " n JE
Lemma

Under the conditions of the DCT, set g, = sup {fn, fnt1,---}
k>n

and h,, = ;Ef {fn, fn+1,...}. Then g, and h,, are integrable and

limg, = f = limh, a.e.

Proof of DCT (sketch).
» Both g,, and h,, are monotone and converging. Apply MCT.

Increasing the Convergence

Theorem (Fatou’s Lemma)
If{f.} is a sequence of measurable functions converging to f

a.e.on E, then
/ lim f,, <lim inf/ fn
E M n E

Theorem (Monotone Convergence Theorem)

If{fn} is an increasing sequence of nonnegative measurable
functions converging to f, then

/1iTanfnzli£n/fn

Corollary (Beppo Levi Theorem (cf.))
If{f.} is a sequence of nonnegative measurable functions,

then 00 00
/2&:2/&

Sidebar: Littlewood’s Three Principles

John Edensor Littlewood said,

The extent of knowledge required is nothing so great
as sometimes supposed. There are three principles,
roughly expressible in the following terms:
» every measurable set is nearly a finite union of
intervals;
» every measurable function is nearly continuous;
» every convergent sequence of measurable
functions is nearly uniformly convergent.
Most of the results of analysis are fairly intuitive
applications of these ideas.

From Lectures on the Theory of Functions, Oxford, 1944, p. 26.

Extensions of Convergence

The sequence f,, convergesto f ...

Definition (Convergence Almost Everywhere)
almost everywhere it m({x : fn(xz) » f(x)}) = 0.

Definition (Convergence Almost Uniformly)

almost uniformly on E if, for any € > 0, there is a set A C E with
m(A) < e so that f,, converges uniformly on E — A.

Definition (Convergence in Measure)
in measure if, for any € > 0, lirrolo m({z :|fn(z) — f(z)| > €})=0.

Definition (Convergence in Mean (of order p > 1))

1/p
in meanif lim ||f, — f|, = lim [/ |ffn|p] =0
n—oo n—oo E




Integrated Exercises

Exercises

1.
2.
3.

Prove: If f is integrable on E, then |f| is integrable on E.

JE R

True or False: If | f| is integrable over E, then f is
integrable over E.

Let f be integrable over E. For any € > 0, there is a simple
(resp. step) function ¢ (resp. 1) such that / If —o| <e
E

Forn=Fk+2",0 <k < 2", define fn= X[k2-7,(k+1)2-¥]-
5.1 Show that f,, does not converge for any x € [0, 1].

5.2 Show that f,, does not converge a.e. on [0, 1].

5.3 Show that f,, does not converge almost uniformly on [0, 1].
5.4 Show that f,, — 0 in measure.

5.5 Show that f,, — 0 in mean (of order 2).

Prove: If { is integrable over E, then
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