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“Riemann, We Have a Problem.”

There are problems with Riemann integration.

1. Define Dirichlet’s function (1829) D(x) =

{
1 if x ∈ Q
0 otherwise

.

Then
∫

[0,1]
D(x) dx does not exist.

2. Set fn(x) =






2n2x 0 ≤ x < 1
2n

2n(1− nx) 1
2n ≤ x < 1

n

0 otherwise
. Then

∫

[0,1]
lim

n→∞
fn(x) dx $= lim

n→∞

∫

[0,1]
fn(x) dx.

Enter Henri Lebesgue in 1902.



A Bad Sequence of Functions

Example

! Find
∫

fn, limn
∫

fn, limn fn, and
∫

limn fn.

Toward a Unit of Measure

Definition
The length of an interval in R1 is the difference of the endpoints
and is given by !([a, b]) = b− a.

Goal: To have a set-function m : M → R that “measures” the
“size” of a set where m ideally satisfies:

1. M = P(R); id est, every set can be measured.
2. For every interval I, open or closed or not, m(I) = !(I).
3. If the sequence {En} is disjoint, then m(

⋃
En) =

∑
m(En).

4. m is translation invariant; i.e., m(E + x) = m(E) for every
E and any x ∈ R.

Unfortunately, this is impossible.1 We give up the first and allow
sets not to be in the class of measurable sets, M ⊂ P(R).

1Even the first 3 are impossible assuming
the continuum hypothesis.

σ-Algebra of Sets

Definition
Let A be a collection of sets. Then A is an algebra of sets or a
Boolean algebra iff

! if A ∈ A, then Ac ∈ A,

! if A,B ∈ A, then A ∪B ∈ A.

De Morgan’s laws imply that if A,B ∈ A, then A ∩B ∈ A. Then
we also have ∅ ∈ A and X ∈ A.

Definition
Let A be an algebra of sets. Then A is a σ-algebra of sets or
Borel field iff for every countable sequence {Ai} of sets from A,
we have

⋃
Ai ∈ A.

De Morgan’s laws imply that countable intersections stay in A.

Theorem
There is a smallest σ-algebra containing any collection of sets.

Sidebar: Borel Sets

Definition
The Borel σ-algebra on R is the smallest σ-algebra containing
G, all of the open sets in R, and is denoted by B(R).

Proposition
The Borel σ-algebra B(R) is (also) generated by each of:

! F = {all closed sets in R}
! {(−∞, b] : b ∈ R}
! {(a, b] : a, b ∈ R}

Proposition
Let Sδ = {

⋂
Si : Si ∈ S} and Sσ = {

⋃
Si : Si ∈ S}. Then

G ! Gδ !Gδσ ! Gδσδ ! · · ·
!! !! !! !!

F!Fσ !Fσδ !Fσδσ ! · · ·
· · · ! B(R) ! P(R)



Countably Additive Measure

Definition
A countably additive measure is a set function m such that

! m is a non-negative extended real-valued function on a
σ-algebra M of subsets of R; that is, m : M → [0,∞].

! m (
⋃

En) =
∑

m(En) for any sequence of disjoint subsets.

Exercises
Let m be a countably additive measure on the σ-algebra M.

1. If A and B are in M with A ⊂ B, then m(A) ≤ m(B).
2. If there is a set A ∈ M with m(A) < ∞, then m(∅) = 0.

3. Show that m is countably subadditive or that for any
sequence of sets, m(

⋃
En) ≤

∑
m(En). (Hint: Bn = An −

[

i<n

Ai.)

4. Let n be the counting measure, the number of elements in
a set. Show that n satisfies Goals 1, 3, and 4.

Outer Measure

Definition
The outer measure of A is

m∗(A) = inf
A⊂

S
In

∑

n

!(In)

where In is open and
⋃

In covers A with a countable union.

Proposition
The outer measure of an interval is its length or m∗(I) = !(I).

Proof.
I. I = [a, b]. (a) Since [a, b] ⊂ (a− ε, b + ε), then m∗(I) ≤ b− a.
(b) Heine-Borel thm: we need only consider finite covers. Work
with the finite cover to show

∑
!(In) ≥ b− a.

II. Any finite interval I. There is a closed interval J ⊂ I such
that !(I)− ε ≤ !(J) = m∗(J) ≤ m∗(I) ≤ m∗(I) = !(I).
III. Any infinite interval. !

Outer Measure is Countably Subadditive

Theorem
Let {An} be a countable collection of subsets of R. Then

m∗

(
⋃

n

An

)
≤

∑

n

m∗(An)

Proof.
“Wolog” all An’s have finite outer measure. For each An there is
a countable collection of open intervals {In,i} covering An such
that ∑

i

!(In,i) < m∗(An) +
ε

2n

The set {In,i : n, i ∈ N} covers
⋃

An. Thence

m∗

(
⋃

n

An

)
≤

∑

n,i

!(In,i) =
∑

n

∑

i

!(In,i) <
∑

n

(
m∗(An) +

ε

2n

)

Measured Exercises

Exercises
1. If A is a countable set, then m∗(A) = 0.

2. The closed interval [0, 1] is not countable.

3. Show that m∗(Q ∩ [0, 1]) = 0 and m∗(Q) = 0.

4. Let A = Q ∩ [0, 1] and let {In : n = 1..N} be a finite
collection of open intervals covering A. Then

∑
!(In) ≥ 1.

5. Reconcile 1. through 4.

6. Given any set A and any ε > 0, there is an open set G
such that A ⊂ G and m∗(G) ≤ m∗(A) + ε.
(Confer “Littlewood’s Three Principles.”)

7. Why is m∗ translation invariant?



Lebesgue Measure

Lebesgue outer measure m∗ satisfies goals 1, 2, and 4, but not
goal 3, countable additivity; m∗ is only countably subadditive.
We can gain countable additivity by giving up goal 1 and
reducing the collection M of sets; there will be sets that can’t
be measured. This approach is not without difficulties, though.
The existence of nonmeasurable sets2 leads to problems such
as Vitali’s theorem which yields a method of decomposing the
interval [0, 1] into a set of measure 2. (Also see the Hausdorff
paradox.)

We will use the definition of a set being measurable that was
given by Carathéodory.

2See “Non-measurable set” for an intuitive
explanation.

Measurable Sets

Definition
The set E is measurable iff for each set A we have

m∗(A) = m∗(A ∩ E) + m∗(A ∩ Ec).

Proposition
If E is measurable, then then Ec is measurable.

Proposition
If m∗(E) = 0, then E is measurable.

Proof.
Let A be any set. Then A ∩E ⊂ E implies m∗(A ∩E) ≤ m∗(E).
Hence m∗(A ∩ E) = 0. Now A ∩ Ec ⊂ A, so

m∗(A) ≥ m∗(A ∩ Ec) = m∗(A ∩ E) + m∗(A ∩ Ec).

Properties of “Measurable”

Proposition
If E1 and E2 are measurable, then so is E1 ∪ E2.

Proof.
Let A be any set. Since E2 ∈ M, then

m∗(A ∩ Ec
1) = m∗((A ∩ Ec

1) ∩ E2) + m∗((A ∩ Ec
1) ∩ Ec

2).
From A ∩ (E1 ∪ E2) = (A ∩ E1) ∪ (A ∩ E2 ∩ Ec

1), we see that
m∗(A ∩ (E1 ∪ E2)) ≤ m∗(A ∩ E1) + m∗(A ∩ E2 ∩ Ec

1)
So
m∗(A ∩ (E1 ∪ E2)) + m∗(A ∩ (E1 ∪ E2)c)

≤ m∗(A ∩ E1) + m∗(A ∩ E2 ∩ Ec
1) + m∗(A ∩ (E1 ∪ E2)c)

= m∗(A ∩ E1) + m∗(A ∩ Ec
1) = m∗(A)

Proposition
M is an algebra of sets.

A Bigger “Measurable” Cup

Proposition
Let A be any set and E1, E2, . . . , EN be a finite sequence of
disjoint measurable sets. Then

m∗

(
A ∩

[
N⋃

i=1

Ei

])
=

N∑

i=1

m∗(A ∩ Ei)

Proof.

Induction on n with

(
A ∩

n⋃
Ei

)
∩ En = A ∩ En and

(
A ∩

n⋃
Ei

)
∩ Ec

n = A ∩
(⋃n−1 Ei

)
.



A Countable “Measurable” Cup

Proposition
Let E1, E2, . . . be a countable sequence of measurable sets.
Then E =

⋃∞
i=1 Ei is measurable.

Proof.
Wolog the Ei are pairwise disjoint. (Otherwise define Bi

= Ei −
⋃i−1

j=1 Ej .) Let A be any set and set Fn =
⋃n

i=1 Ei. Then
Fn ∈ M and F c

n ⊃ Ec. Then m∗(A ∩ Fn) =
∑n

i=1 m∗(A ∩ Ei).
Hence, since n is arbitrary and m∗(A) is independent of n,

m∗(A) ≥
n∑

i=1

m∗(A∩Ei)+m∗(A∩Ec) ≥ m∗(A∩E)+m∗(A∩Ec)

Proposition
M is a σ-algebra of sets.

The Lebesgue Measure m.

Definition
Define Lebesgue measure to be the restriction m = m∗|M.

Theorem
The Borel sets are Lebesgue measurable.

Theorem
Let E be a set and let ε > 0. TFAE:

1. E is Lebesgue measurable
2. there is an open set E ⊂ G such that m∗(G− E) < ε

3. there is a closed set F ⊂ E such that m∗(E − F ) < ε

4. there is a G ∈ Gδ such that E ⊂ G and m∗(G− E) = 0
5. there is an F ∈ Fσ such that F ⊂ E and m∗(E − F ) = 0

Measure Zero

Definition
A set S ⊂ R has measure zero if and only if m(S) = 0; i.e., for
any ε > 0 there is an open cover C = {Gk | k ∈ N} of S such
that

∑

k∈N
m(Gk) < ε.

Example

1. Any finite set (countable set) has measure zero.
2. Every interval [a, b] is not measure zero (when a < b).

The length of [0, 1] is 1. The rationals contained in [0, 1] have
measure zero. What is the measure of the irrationals in [0, 1]?

Definition (A.E.)
A property that holds for all x except on a set of measure zero
is said to hold almost everywhere.

Sidebar: Q Is Small

Theorem
The rationals are countable.

Proof.
Let Q be the set of rational numbers. The array below shows a
method of enumerating all elements of Q.

1/1(1) 2/1(2) 3/1(4) 4/1(7) . . .
1/2(3) 2/2(5) 3/2(8) 4/2(12) . . .
1/3(6) 2/3(9) 3/3(13) 4/3(18) . . .
1/4(10) 2/4(14) 3/4(19) 4/4(25) . . .

...
...

...
... . . .

Since each rational is counted, we have |Q| ≤ |N| where we
use | · | to indicate cardinality (or size). But we know that
N ⊆ Q, so that |N| ≤ |Q|. Hence |Q| = |N|.



Covering Q

Theorem
The set of rationals has measure zero.

Proof.
Let ε > 0. List the rationals in order Q = {r1, r2, r3, . . . } as given
by the “countability matrix” defined earlier. For each rational rk,
define the open interval Ik = (rk − ε/2k+1, rk + ε/2k+1). Then

! the collection C = {Ik | k ∈ N} forms an open cover of Q,
! the length of each Ik is m(Ik) = ε/2k.

Then m(Q) ≤ m(C) which is

m(Q) ≤ m(C) =
∞∑

k=1

m(Ik) =
∞∑

k=1

ε/2k = ε
∞∑

k=1

1
2k

= ε

Measurable Functions
Proposition (measurability condition)
Let f be an extended real-valued function on a measurable
domain D. Then TFAE:

1. For each α ∈ R, the set {x : f(x) > α} is measurable.
2. For each α ∈ R, the set {x : f(x) ≥ α} is measurable.
3. For each α ∈ R, the set {x : f(x) < α} is measurable.
4. For each α ∈ R, the set {x : f(x) ≤ α} is measurable.

These imply
5. For each β ∈ R∞, the set {x : f(x) = β} is measurable.

Proof.
(1.) =⇒ (2.) {x : f(x) ≥ α} =

⋂
{x : f(x) > α− 1/n}

(2.) =⇒ (3.) {x : f(x) < α} = D − {x : f(x) ≥ α}
(3.) =⇒ (4.) {x : f(x) ≤ α} =

⋂
{x : f(x) < α + 1/n}

(4.) =⇒ (1.) {x : f(x) > α} = D − {x : f(x) ≤ α}
(∗.) =⇒ (5.) Exercise. (2 cases: β < ∞ and β = ±∞.)

Definition of a Measurable Function

Definition
Let D be measurable. Then f : D → R∞ is measurable iff f
satisfies the measurability condition.

Proposition
Let f and g be measurable (real-valued) functions defined on D
and c ∈ R. Then f + c, cf, f ± g, f2, and fg are measurable.

Proof (sketch).
(f + c, cf): Use {x : f(x) + c < α} = {x : f(x) < α− c}, etc.
(f + g): If f(x) + g(x) < α, there is an r ∈ Q (r = r(α) $= r(x))
such that f(x) < r < α− g(x). Thus
{x : f(x) + g(x) < α} =

⋃

r

({x : f(x) < r} ∩ {x : g(x) < α− r})

is a countable union of measurable sets, hence is measurable.
(f2): Use {x : f2(x)>α}={x : f(x)>

√
α} ∪ {x : f(x)<−

√
α}.

(fg): Use fg = 1
4(f + g)2 − 1

4(f − g)2.

Sequences of Measurable Functions

Theorem
Let {fn} be a sequence of measurable functions on a common
domain D. Then the functions

sup{f1, . . . , fn}, sup
n

fn, lim sup
n

fn

are measurable. Analogous statements hold for inf and lim inf .

Proof.
Set h = sup{f1, . . . , fn}, then

{x : h(x) > α} =
n⋃

i=1

{x : fi(x) > α}.

Hence h is measurable. Now set g = supn fn, then

{x : g(x) > α} =
∞⋃

i=1

{x : fi(x) > α}.

Hence g is measurable. Combine the above with the definition
lim sup

n
fn = inf

n
sup
k≥n

fk to finish.



‘Simple’ Functions are Measurable

Proposition
If f is measurable and g = f a.e., then g is measurable.

Proof.
Set E = {x : f(x) $= g(x)}. Then m(E) = 0. So {x : g(x) > α}
= {x : f(x) > α}∪ {x ∈ E : g(x) > α}− {x ∈ E : g(x) ≤ α}.

Definition
A measurable real-valued function φ is simple if it assumes only
finitely many values. Then

φ(x) =
n∑

k=1

αkχAk(x) where Ak = {x : φ(x) = αk}

If each Ak is an interval, then φ is called a step function.

Example

! s(x)=
N∑

k=1

k2

N2
χ[ k−1

N , k
N ](x) is a step function; χQ is simple.

Measurable Functions are ‘Simple’

Proposition
Let f : [a, b] → R∞ be measurable such that m({f(x)= ±∞}) is
zero. Given ε > 0, there is a step function s and a continuous
function h so that |f − s| < ε and |f − h| < ε a.e.

Proof (Exercise).

1. There is an M such that |f | ≤ M except on a set of
measure < ε/3.

2. There is a simple function φ such that |f − φ| < ε except
when |f | > M. (Hint: (M − −M) ≤ n · ε.)

3. There is a step function g such that g = φ except on a set
of measure < ε/3. (Hint: look here.)

4. There is a continuous function h such that h = g except on
a set of measure < ε/3. (Hint: think like a spline.)

Functionally Measured Exercises

Exercises
1. Let φ1 and φ2 be simple functions and c ∈ R. Show that

a. cφ is a simple function,
b. φ1 + φ2 is a simple function,
c. φ1 · φ2 is a simple function.

2. For a set S define the characteristic or indicator function to

be χS(x) =

{
1 x ∈ S

0 x /∈ S
. Show that

a. χA∩B = χA · χB ,
b. χA∪B = χA + χB − χA · χB .
c. χAc = 1− χA.

3. Let D be a dense set of real numbers; i.e., every interval
contains an element of D. Let f be an extended real-
valued function on R such that for any d ∈ D, the set
{x : f(x) > d} is measurable. Then f is measurable.

Integration

We began by looking at two examples of integration problems.
! The Riemann integral over [0, 1] of a function with infinitely

many discontinuities didn’t exist even though the points of
discontinuity formed a set of measure zero.
(The points of discontinuity formed a dense set in [0, 1].)

! The limit of a sequence of Riemann integrable functions did
not equal the integral of the limit function of the sequence.
(Each function had area 1/2, but the limit of the sequence
was the zero function.)

We will look at Riemann integration, then Riemann-Stieltjes
integration, and last, develop the Lebesgue integral.

There are many other types of integrals: Darboux, Denjoy,
Gauge, Perron, etc. See the list given in the “See also” section
of Integrals on Mathworld.



Riemann Integral

Definition
! A partition P of [a, b] is a finite set of points such that
P = {a = x0 < x1 < · · · < xn−1 < xn = b}.

! Set Mi = sup f(x) on [xi−1, xi]. The upper sum of f on
[a, b] w.r.t. P is

U(P, f) =
n∑

i=1

Mi ·∆xi

! The upper Riemann integral of f over [a, b] is∫̄ b

a
f(x) dx = inf

P
U(P, f)

Exercise
1. Define the lower sum L(P, f) and the lower integral

∫

¯
b
af .

Definitely a Riemann Integral

Definition
If

∫̄ b
a f(x) dx =

∫

¯
b
af(x) dx, then f is Riemann integrable and is

written as
∫ b
a f(x) dx and f ∈ R on [a, b].

Proposition
A function f is Riemann integrable on [a, b] if and only if for
every ε > 0 there is a partition P of [a, b] such that

U(P, f)− L(P, f) < ε.

Theorem
If f is continuous on [a, b], then f ∈ R on [a, b].

Theorem
If f is bounded on [a, b]with only finitely many points of discont-
inuity, then f ∈ R on [a, b].

Properties of Riemann Integrals

Proposition
Let f and g ∈ R on [a, b] and c ∈ R. Then

!
∫ b
a cf dx = c

∫ b
a f dx

!
∫ b
a (f + g) dx =

∫ b
a f dx +

∫ b
a g dx

! f · g ∈ R

! if f ≤ g, then
∫ b
a f dx ≤

∫ b
a g dx

!
∣∣∣
∫ b
a f dx

∣∣∣ ≤
∫ b
a |f | dx

! Define F (x) =
∫ x
a f(t) dt. Then F is continuous and, if f is

continuous at x0, then F ′(x0) = f(x0)

! If F ′ = f on [a, b], then
∫ b
a f(x) dx = F (b)− F (a)

Riemann Integrated Exercises

Exercises
1. If

∫ b
a |f(x)| dx = 0, then f = 0.

2. Show why
∫ 1
0 χQ(x) dx does not exist.

3. Define

Sn(x) =
n+1∑

k=1

(
k − 1

k
· χ[ k−1

k , k
k+1)(x)

)
+

n

n + 1
χ[n+1

n+2 ,1](x).

3.1 How many discontinuities does Sn have?
3.2 Prove that S ′

n(x) = 0 a.e.
3.3 Calculate

∫ 1
0 Sn(x) dx.

3.4 What is S∞?
3.5 Does

∫ 1
0 S∞(x) dx exist?

(See an animated graph of SN .)



Riemann-Stieltjes Integral

Definition
! Let α(x) be a monotonically increasing function on [a, b].

Set ∆αi = α(xi)− α(xi−1).
! Set Mi = sup f(x) on [xi−1, xi]. The upper sum of f on

[a, b] w.r.t. α and P is

U(P, f, α) =
n∑

i=1

Mi ·∆αi

! The upper Riemann-Stieltjes integral of f over [a, b] w.r.t. α
is ∫̄ b

a
f(x) dα(x) = inf

P
U(P, f, α)

Exercise
1. Define the lower sum L(P, f, α) and lower integral

∫

¯
b
afdα.

Definitely a Riemann-Stieltjes Integral

Definition
If

∫̄ b
a f dα =

∫

¯
b
af dα, then f is Riemann-Stieltjes integrable and

is written as
∫ b
a f(x) dα(x) and f ∈ R(α) on [a, b].

Proposition
A function f is Riemann-Stieltjes integrable w.r.t. α on [a, b] iff
for every ε > 0 there is a partition P of [a, b] such that

U(P, f, α)− L(P, f, α) < ε.

Theorem
If f is continuous on [a, b], then f ∈ R(α) on [a, b].

Theorem
If f is bounded on [a, b]with only finitely many points of discont-
inuity and α is continuous at each of f ’s discontinuities, then
f ∈ R(α) on [a, b].

Properties of Riemann-Stieltjes Integrals

Proposition
Let f and g ∈ R(α) and in β on [a, b] and c ∈ R. Then

!
∫ b
a cf dα = c

∫ b
a f dα and

∫ b
a f d(cα) = c

∫ b
a f dα

!
∫ b
a (f + g) dα =

∫ b
a f dα +

∫ b
a g dα and∫ b

a f d(α + β) =
∫ b
a f dα +

∫ b
a f dβ

! f · g ∈ R(α)
! if f ≤ g, then

∫ b
a f dα ≤

∫ b
a g dα

!
∣∣∣
∫ b
a f dα

∣∣∣ ≤
∫ b
a |f | dα

! Suppose that α′ ∈ R and f is bounded. Then f ∈ R(α) iff
fα′ ∈ R and ∫ b

a
f dα =

∫ b

a
f · α′ dx

Riemann-Stieltjes Integrals and Series

Proposition
If f is continuous at c ∈ (a, b) and α(x) = r for a ≤ x < c and
α(x) = s for c < x ≤ b, then

∫ b

a
f dα = f(c) (α(c+)− α(c−))

= f(c) (s− r)

Proposition
Let α = 1x2, the greatest integer function. If f is continuous on
[0, b], then ∫ b

0
f(x) d1x2 =

)b*∑

k=1

f(k)



Riemann-Stieltjes Integrated Exercises

Exercises

1.
∫ 1
0 x dx2

2.
∫ π/2
0 cos(x) d sin(x)

3.
∫ 5/2
0 x d(x− 1x2)

4.
∫ 1
−1 exd|x|

5.
∫ 3/2
−3/2 exd1x2

6.
∫ 1
−1 exd1x2

7. Set H to be the Heaviside function; i.e.,

H(x) =

{
0 x ≤ 0
1 otherwise

.

Show that, if f is continuous at 0, then
∫ +∞

−∞
f(x) dH(x) = f(0).

Lebesgue Integral

We start with simple functions.

Definition
A function has finite support if it vanishes outside a finite
interval.

Definition
Let φ be a measurable simple function with finite support. If

φ(x) =
n∑

i=1

aiχAi(x) is a representation of φ, then

∫
φ(x) dx =

n∑

i=1

ai ·m(Ai)

Definition
If E is a measurable set, then

∫

E
φ =

∫
φ · χE .

Integral Linearity

Proposition
If φ and ψ are measurable simple functions with finite support

and a, b ∈ R, then
∫

(aφ + bψ) = a

∫
φ + b

∫
ψ. Further,

if φ ≤ ψ a.e., then
∫

φ ≤
∫

ψ.

Proof (sketch).

I. Let φ =
N∑

αiχAi and ψ =
M∑

βiχBi . Then show aφ + bψ can

be written as aφ + bψ =
K∑

(aαki + bβkj )χEk for the properly
chosen Ek. Set A0 and B0 to be zero sets of φ and ψ. (Take
{Ek : k = 0..K} = {Aj ∩Bk : j = 0..N, k = 0..M}.)

II. Use the definition to show
∫

ψ−
∫

φ =
∫

(ψ−φ) ≥
∫

0 = 0.

Steps to the Lebesgue Integral

Proposition
Let f be bounded on E ∈ M with m(E) < ∞. Then f is
measurable iff

inf
f≤ψ

∫

E
ψ = sup

f≥φ

∫

E
φ

for all simple functions φ and ψ.

Proof.
I. Suppose f is bounded by m. Define

Ek =
{

x :
k − 1

n
M < f(x) ≤ k

n
M

}
, −n ≤ k ≤ n

The Ek are measurable, disjoint, and have union E. Set

ψn(x) =
M

n

n∑

−n

k χEk(x), φn(x) =
M

n

n∑

−n

(k − 1) χEk(x)



SLI (cont)

(proof cont).
Then φn(x) ≤ f(x) ≤ ψ(x), and so

! inf
∫

E
ψ ≤

∫

E
ψn =

M

n

n∑

k=−n

k m(Ek)

! sup
∫

E
φ ≥

∫

E
φn =

M

n

n∑

k=−n

(k − 1) m(Ek)

Thus 0 ≤ inf
∫
E ψ − sup

∫
E φ ≤ M

n m(E). Since n is arbitrary,
equality holds.
II. Suppose that inf

∫
E ψ = sup

∫
E φ. Choose φn and ψn so that

φn ≤ f ≤ ψn and
∫
E(ψn − φn) < 1

n . The functions ψ∗ = inf ψn

and φ∗ = supφn are measurable and φ∗ ≤ f ≤ ψ∗. The set
∆ = {x : φ∗(x) < ψ∗(x)} has measure 0. Thus φ∗ = ψ∗ almost
everywhere, so φ∗ = f a.e. Hence f is measurable.

Example Steps

Example
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Defining the Lebesgue Integral

Definition
If f is a bounded measurable function on a measurable set E
with m(E) < ∞, then

∫

E
f = inf

ψ≥f

∫

E
ψ

for all simple functions ψ ≥ f.

Proposition
Let f be a bounded function defined on E = [a, b]. If f is
Riemann integrable on [a, b], then f is measurable on [a, b] and

∫

E
f =

∫ b

a
f(x) dx;

the Riemann integral of f equals the Lebesgue integral of f.

Properties of the Lebesgue Integral

Proposition
If f and g are measurable on E, a set of finite measure, then

!
∫

E
(αf + βg) = α

∫

E
f + β

∫

E
g

! if f = g a.e., then
∫

E
f =

∫

E
g

! if f ≤ g a.e., then
∫

E
f ≤

∫

E
g

!
∣∣∣∣
∫

E
f

∣∣∣∣ ≤
∫

E
|f |

! if a ≤ f ≤ b, then a ·m(E) ≤
∫

E
f ≤ b ·m(E)

! if A ∩B = ∅, then
∫

A∪B
f =

∫

A
f +

∫

B
f

Proof.
Exercise.



Lebesgue Integral Examples

Examples

1. Let D(x) =

{
1
q x = p

q ∈ Q
0 otherwise

}
. Then

∫

[0,1]
D =

∫ 1

0
D(x) dx.

2. Let χQ(x) =

{
1 x ∈ Q
0 otherwise

}
. Then

∫

[0,1]
χQ $=

∫ 1

0
χQ(x)dx.

3. Define

fn(x) =
n+1∑

k=1

(
k − 1

k
· χ[ k−1

k , k
k+1)(x)

)
+

n

n + 1
χ[n+1

n+2 ,1](x).

Then
3.1 fn is a step function, hence integrable
3.2 f ′n(x) = 0 a.e.

3.3
1
4
≤

∫

[0,1]
fn =

∫ 1

0
fn(x) dx <

3
8

Extending the Integral Definition

Definition
Let f be a nonnegative measurable function defined on a
measurable set E. Define∫

E
f = sup

h≤f

∫

E
h

where h is a bounded measurable function with finite support.
Proposition
If f and g are nonnegative measurable functions, then

!
∫

E
c f = c

∫

E
f for c > 0

!
∫

E
f + g =

∫

E
f +

∫

E
g

! If f ≤ g a.e., then
∫

E
f ≤

∫

E
g

Proof.
Exercise.

General Lebesgue’s Integral

Definition
Set f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}. Then
f = f+ − f− and |f | = f+ + f−. A measurable function f is
integrable over E iff both f+ and f− are integrable over E, and

then
∫

E
f =

∫

E
f+ −

∫

E
f−.

Proposition
Let f and g be integrable over E and let c ∈ R. Then

1.
∫

E
cf = c

∫

E
f

2.
∫

E
f + g =

∫

E
f +

∫

E
g

3. if f ≤ g a.e., then
∫

E
f ≤

∫

E
g

4. if A, B are disjoint m’ble subsets of E,

∫

A∪B
f =

∫

A
f +

∫

B
f

Convergence Theorems

Theorem (Bounded Convergence Theorem)
Let {fn : E → R} be a sequence of measurable functions
converging to f with m(E) < ∞. If there is a uniform bound M
for all fn, then ∫

E
lim
n

fn = lim
n

∫

E
fn

Proof (sketch).
Let ε > 0.

1. fn converges “almost uniformly;” i.e., ∃A,N s.t. m(A) <
ε

4M
and, for n > N, x ∈ E −A =⇒ |fn(x)− f(x)| ≤ ε

2 m(E)
.

2.
∣∣∣∣
∫

E
fn −

∫

E
f

∣∣∣∣ =
∣∣∣∣
∫

E
fn − f

∣∣∣∣ ≤
∫

E
|fn − f | =

(∫

E−A
+

∫

A

)
|fn−f |

3.
∫

E−A
|fn − f |+

∫

A
|fn|+ |f | ≤ ε

2m(E)
·m(E) + 2M · ε

4M
= ε



Lebesgue’s Dominated Convergence Theorem

Theorem (Dominated Convergence Theorem)
Let {fn : E → R} be a sequence of measurable functions
converging a.e. on E with m(E) < ∞. If there is an integrable
function g on E such that |fn| ≤ g then

∫

E
lim
n

fn = lim
n

∫

E
fn

Lemma
Under the conditions of the DCT, set gn = sup

k≥n
{fn, fn+1, . . . }

and hn = inf
k≥n

{fn, fn+1, . . . }. Then gn and hn are integrable and

lim gn = f = lim hn a.e.

Proof of DCT (sketch).
! Both gn and hn are monotone and converging. Apply MCT.
! hn ≤ fn ≤ gn =⇒

∫
E hn ≤

∫
E fn ≤

∫
E gn.

Increasing the Convergence

Theorem (Fatou’s Lemma)
If {fn} is a sequence of measurable functions converging to f
a.e. on E, then ∫

E
lim
n

fn ≤ lim inf
n

∫

E
fn

Theorem (Monotone Convergence Theorem)
If {fn} is an increasing sequence of nonnegative measurable
functions converging to f, then

∫
lim
n

fn = lim
n

∫
fn

Corollary (Beppo Levi Theorem (cf.))
If {fn} is a sequence of nonnegative measurable functions,
then ∫ ∞∑

n=1

fn =
∞∑

n=1

∫
fn

Sidebar: Littlewood’s Three Principles

John Edensor Littlewood said,
The extent of knowledge required is nothing so great
as sometimes supposed. There are three principles,
roughly expressible in the following terms:

! every measurable set is nearly a finite union of
intervals;

! every measurable function is nearly continuous;
! every convergent sequence of measurable

functions is nearly uniformly convergent.
Most of the results of analysis are fairly intuitive
applications of these ideas.

From Lectures on the Theory of Functions, Oxford, 1944, p. 26.

Extensions of Convergence

The sequence fn converges to f . . .

Definition (Convergence Almost Everywhere)
almost everywhere if m({x : fn(x) " f(x)}) = 0.

Definition (Convergence Almost Uniformly)
almost uniformly on E if, for any ε > 0, there is a set A ⊂ E with
m(A) < ε so that fn converges uniformly on E −A.

Definition (Convergence in Measure)
in measure if, for any ε > 0, lim

n→∞
m({x : |fn(x)− f(x)| ≥ ε})=0.

Definition (Convergence in Mean (of order p > 1))

in mean if lim
n→∞

‖fn − f‖p = lim
n→∞

[∫

E
|f − fn|p

]1/p

= 0



Integrated Exercises

Exercises
1. Prove: If f is integrable on E, then |f | is integrable on E.

2. Prove: If f is integrable over E, then
∣∣∣∣
∫

E
f

∣∣∣∣ ≤
∫

E
|f |.

3. True or False: If |f | is integrable over E, then f is
integrable over E.

4. Let f be integrable over E. For any ε > 0, there is a simple

(resp. step) function φ (resp. ψ) such that
∫

E
|f − φ| < ε.

5. For n = k + 2ν , 0 ≤ k < 2ν , define fn = χ[k2−ν ,(k+1)2−ν ].
5.1 Show that fn does not converge for any x ∈ [0, 1].
5.2 Show that fn does not converge a.e. on [0, 1].
5.3 Show that fn does not converge almost uniformly on [0, 1].
5.4 Show that fn → 0 in measure.
5.5 Show that fn → 0 in mean (of order 2).
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