| Mat 5620 | Exam 1 | NAME:           |
|----------|--------|-----------------|
| FALL '07 |        | ASU EMAIL ID #: |

Work quickly and carefully, following directions closely. Answer all questions completely.

- $\S$ I. Problems.
  - 1. Let C be the astroid given by  $f(t) = [\cos^3(t), \sin^3(t)]$  for  $t \in [0, 2\pi]$ . Let P(t) be a point on C. Let  $P_x$  and  $P_y$  be the x- and y-intercepts of the line tangent to C at P(t). Show that the line segment  $\overline{P_x P_y}$  has constant length; i.e., the length of the segment is independent of t. (Click on the image to see a larger graph.)



2. Let  $\vec{r}: \mathbb{R} \to \mathbb{R}^3$  be a vector-valued function that has 2 continuous derivatives for all t. Prove or disprove

$$\frac{d}{dt}[\vec{r}(t) \times \vec{r}'(t)] = \vec{r}(t) \times \vec{r}''(t)$$

- 3. Let  $f(t) = \frac{2t^2}{1+t^2}$  and set  $C_{6\pi}$  to be the curve given by  $[f(t) \cos(t), f(t) \sin(t)]$  for  $t \in [0, 6\pi]$ . Find the length of the curve C. Can you make a conjecture concerning the ratio  $\frac{\text{length}(C_{2n\pi})}{4n}$  as  $n \to \infty$ ?
- 4. Prove or disprove:

Let  $A_1 = B^{\circ}([1,0],1)$  and  $A_{-1} = B^{\circ}([-1,0],1)$  be open balls in  $\mathbb{R}^2$ . Then  $E = A_1 \cup A_{-1}$  is not separated.

5. Let 
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
. Determine  $f_x$  and  $f_y$ . Is  $f$  differentiable at  $(0,0)$ ?

6. A harmonic function is one that satisfies Laplace's equation  $\nabla^2 f(x, y) = 0$  where  $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ .

- (a) Prove that the functions
  - i.  $f(x, y) = x^3 3x y^2$ ii.  $g(x, y) = 3x^2 y - y^3$ are harmonic.

(b) Find 
$$\frac{d^2z}{dt^2}$$
 for  $z = x^3 - 3x y^2$  when  $x(t) = \ln(t)$  and  $y(t) = e^t$  without expanding z in terms of t.