Work quickly and carefully, following directions closely. Answer all questions completely.

§I. PROBLEMS.

1. Let C be the astroid given by $f(t)=\left[\cos ^{3}(t), \sin ^{3}(t)\right]$ for $t \in[0,2 \pi]$. Let $P(t)$ be a point on C. Let P_{x} and P_{y} be the x - and y-intercepts of the line tangent to C at $P(t)$. Show that the line segment $\overline{P_{x} P_{y}}$ has constant length; i.e., the length of the segment is independent of t. (Click on the image to see a larger graph.)

2. Let $\vec{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a vector-valued function that has 2 continuous derivatives for all t. Prove or disprove

$$
\frac{d}{d t}\left[\vec{r}(t) \times \vec{r}^{\prime}(t)\right]=\vec{r}(t) \times \vec{r}^{\prime \prime}(t)
$$

3. Let $f(t)=\frac{2 t^{2}}{1+t^{2}}$ and set $C_{6 \pi}$ to be the curve given by $[f(t) \cos (t), f(t) \sin (t)]$ for $t \in[0,6 \pi]$. Find the length of the curve C. Can you make a conjecture concerning the ratio $\frac{\text { length }\left(C_{2 n \pi}\right)}{4 n}$ as $n \rightarrow \infty$?
4. Prove or disprove:

Let $A_{1}=B^{\circ}([1,0], 1)$ and $A_{-1}=B^{\circ}([-1,0], 1)$ be open balls in \mathbb{R}^{2}. Then $E=A_{1} \cup A_{-1}$ is not separated.
5. Let $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$. Determine f_{x} and f_{y}. Is f differentiable at $(0,0)$?
6. A harmonic function is one that satisfies Laplace's equation $\nabla^{2} f(x, y)=0$ where $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$.
(a) Prove that the functions
i. $f(x, y)=x^{3}-3 x y^{2}$
ii. $g(x, y)=3 x^{2} y-y^{3}$
are harmonic.
(b) Find $\frac{d^{2} z}{d t^{2}}$ for $z=x^{3}-3 x y^{2}$ when $x(t)=\ln (t)$ and $y(t)=e^{t}$ without expanding z in terms of t.

