Analysis	Final Exam	NAME:
Summer '06		STUDENT ID #:

Work quickly and carefully, following directions closely. Answer all questions completely.

 $\S I.$ Problems.

1. (a) Prove: If $a_k > 0$ $(\forall k \ge 0)$ and $\sum_k a_k$ converges, then $\sum_k 1/a_k$ diverges.

(b) Is the condition that $a_k > 0$ necessary?

2. Suppose that $f : [a, b] \to \mathbb{R}$ is continous at all $x \in [a, b]$. Prove: If $\int_a^b |f(x)| \, dx = 0$, then f(x) = 0 on [a, b]. 3. Determine whether each of the sequences of functions given below converges pointwise, converges uniformly, or diverges. Justify your answer.

(a)
$$f_n(x) = \frac{\tan^n(x)}{n}$$
 on $(-\pi/2, \pi/2)$.

(b)
$$g_n(x) = \frac{x^n}{n!}$$
 on \mathbb{R} .

(c)
$$h_n(x) = \frac{\sin(nx)}{\sqrt{n}}$$
 on \mathbb{R} .

(d)
$$p_n(x) = \frac{1}{x^2 + n}$$
 on $[0, 1]$.

- 4. Archimedes discovered that the area under a parabolic arch is always $2/3 \times$ the base \times the height.
 - (a) Prove that Archimedes was correct. (You can assume the parabola has form $y = -x^2 + ax$.)
 - (b) Illustrate the result with the parabola $y = 8x x^2$ on the interval [0, 8].

5. Determine whether or not the following series converge. Justify your answers.

(a)
$$\sum_{k} \frac{1}{k \ln(k)}$$

(b)
$$\sum_{k} \frac{(k!)^2}{(2k)!}$$

(c)
$$\sum_{k} \left(1 + \frac{1}{k}\right)^{k}$$

(d)
$$\sum_{k} \frac{3^{2k+1}}{k^{2k}}$$