1 Theoretical Calculus

1.1 Limits

Definition 1 (Accumulation Point). Let $D \subseteq \mathbb{R}$. A point $a \in \mathbb{R}$ is an accumulation point of D iff every open interval containing a also contains a point $x \in D$ with $x \neq a$.

Definition 2. Let $f : D \to \mathbb{R}$ and a be an accumulation point of D. Then

$$\lim_{x \to a} f(x) = L$$

iff for every $\epsilon > 0$ *there is a* $\delta > 0$ *such that whenever* $x \in D$ *and* $0 < |x - a| < \delta$, *then* $|f(x) - L| < \epsilon$.

Theorem 1 (Algebra of Limits). Suppose that $f, g: D \to \mathbb{R}$ both have finite limits at $x = a \in D$ and $c \in \mathbb{R}$. Then

- $\lim_{x \to a} c f(x) = c \lim_{x \to a} f(x)$
- $\lim_{x \to a} f(x) \pm g(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
- $\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
- if $\lim_{x \to a} g(x) \neq 0$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$

Theorem 2 ("Sandwich" Theorem). Suppose that $g(x) \le f(x) \le h(x)$ for all $x \in (a - h, a + h)$ for some h > 0. If $\lim_{x \to a} g(x) = L = \lim_{x \to a} h(x)$, then $\lim_{x \to a} f(x) = L$.

1.2 Continuity

Definition 3. Let $f : D \to \mathbb{R}$ and a be an accumulation point of D. Then f is continuous at x = a iff for every $\epsilon > 0$ there is a $\delta > 0$ such that whenever $x \in D$ and $|x - a| < \delta$, then $|f(x) - f(a)| < \epsilon$.

Theorem 3. Every real polynomial is continuous at every $x \in \mathbb{R}$.

Theorem 4 (Algebra of Continuity). Suppose that $f, g: D \to \mathbb{R}$ both are continuous at $x = a \in D$ and that $c \in \mathbb{R}$. Then

- cf is continuous at a
- $f \pm g$ is continuous at a
- $f \cdot g$ is continuous at a
- if $g(a) \neq 0$, then f/g is continuous at a

Theorem 5 (Continuity of Composition). Let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$. Suppose that f is continuous at $x = a \in A$, that g is continuous at $x = f(a) \in B$, and that $f(A) \subseteq B$. Then $g \circ f$ is continuous at x = a.

Theorem 6. If a function f is continuous at a and ϕ is a function such that $\lim_{t \to t_0} \phi(t) = a$, then

$$\lim_{t \to t_0} f\left(\phi(t)\right) = f\left(\lim_{t \to t_0} \phi(t)\right)$$

Theorem 7. If a function f is continuous on a closed, finite interval [a, b], then f is bounded on [a, b].

Theorem 8 (Intermediate Value Theorem). If $f : [a, b] \to \mathbb{R}$ is continuous and if k is between f(a) and f(b), then there exists $c \in (a, b)$ such that f(c) = k.

Corollary 9. Every odd degree real polynomial has a real root.

Theorem 10 (Extreme Value Theorem). *If* $f : [a, b] \to \mathbb{R}$ *is continuous, then*

- 1. there exists $x_m \in [a, b]$ such that $f(x_m) = \min_{x \in [a, b]} f(x)$
- 2. there exists $x_M \in [a, b]$ such that $f(x_M) = \max_{x \in [a, b]} f(x)$

Definition 4 (Uniform Continuity). A function $f : D \to \mathbb{R}$ is uniformly continuous on D iff for every $\epsilon > 0$ there is a $\delta > 0$ such that whenever $x_1, x_2 \in D$ and $|x_1 - x_2| < \delta$, then $|f(x_1) - f(x_2)| < \epsilon$.

Theorem 11. If f is continuous on [a, b], then f is uniformly continuous on [a, b].

1.3 The Derivative

Definition 5. Let $f : D \to \mathbb{R}$ and $a \in D$ be an accumulation point. Then

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
$$= \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

Theorem 12. If f is differentiable at x = a, then f is continuous at x = a.

Theorem 13 (Algebra of Derivatives). If $f, g: D \to \mathbb{R}$ are differentiable at x = a and $c \in \mathbb{R}$, then at x = a,

- (cf)' = c(f')
- $(f\pm g)'=f'\pm g'$
- $(f \cdot g)' = f' \cdot g + f \cdot g'$
- if $g'(a) \neq 0$, then $\left(\frac{f}{g}\right)' = \frac{f' \cdot g + f \cdot g'}{g^2}$

Theorem 14 (The Chain Rule). Let $f : A \to B$ and $g : B \to \mathbb{R}$. Suppose that f is differentiable at $x = a \in A$ and that g is differentiable at $x = b = f(a) \in B$. Then $g \circ f$ is differentiable at x = a and

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$$

Corollary 15. Let u be a differentiable function of x and $r \in \mathbb{R}$. Then, when defined,

$$\begin{aligned} (u^{r})' &= r \, u^{r-1} \cdot u' \\ (e^{u})' &= e^{u} \cdot u' \\ \ln(u)' &= \frac{1}{u} \cdot u' \\ \sin(u)' &= \cos(u) \cdot u' & \cos(u)' &= -\sin(u) \cdot u' \\ \tan(u)' &= \sec^{2}(u) \cdot u' & \cot(u)' &= -\csc^{2}(u) \cdot u' \\ \sec(u)' &= \sec(u) \tan(u) \cdot u' & \csc(u)' &= -\csc(u) \cot(u) \cdot u' \\ \sin^{-1}(u)' &= \frac{1}{\sqrt{1-u^{2}}} \cdot u' & \cos^{-1}(u)' &= \frac{-1}{\sqrt{1-u^{2}}} \cdot u' \\ \tan^{-1}(u)' &= \frac{1}{1+u^{2}} \cdot u' & \cot^{-1}(u)' &= \frac{-1}{1+u^{2}} \cdot u' \\ \sec^{-1}(u)' &= \frac{1}{|u|\sqrt{u^{2}-1}} \cdot u' & \csc^{-1}(u)' &= \frac{-1}{|u|\sqrt{u^{2}-1}} \cdot u' \end{aligned}$$

Theorem 16 (Inverse Function Theorem). Let $f : [a, b] \to \mathbb{R}$ be differentiable with $f'(x) \neq 0$ for any $x \in [a, b]$. Then

- f is injective (1–1)
- f^{-1} is continuous on f([a, b])
- f^{-1} is differentiable on f([a, b])
- $(f^{-1})'(y) = \frac{1}{f'(x)}$ where y = f(x)

Theorem 17. Suppose that $f : [a, b] \to \mathbb{R}$ has an extremum at $c \in (a, b)$. If f is differentiable at $c \in (a, b)$, then f'(c) = 0.

Theorem 18 (Rolle's Theorem). If $f : D \to \mathbb{R}$ is continuous on $[a, b] \subseteq D$ and differentiable on (a, b) with f(a) = f(b), then there exists a value $c \in (a, b)$ such that f'(c) = 0.

Theorem 19 (Mean Value Theorem). If $f : D \to \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b), then there exists a value $c \in (a, b)$ such that

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

Corollary 20. If $f : D \to \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b), then there exists a value $\theta \in (0, 1)$ such that

$$f(a+h) = f(a) + h \cdot f'(a+\theta h).$$

Corollary 21. If $f: D \to \mathbb{R}$ is continuous on [a, b], differentiable on (a, b), and f'(x) = 0, then f is a constant function.

Corollary 22. If $f, g: D \to \mathbb{R}$ are continuous on [a, b], differentiable on (a, b), and f'(x) = g'(x) on D, then f(x) = g(x) + k on D where k is a constant.

Corollary 23. If $f: D \to \mathbb{R}$ is differentiable on [a, b], then f' has the Intermediate Value Property.

Theorem 24 (Cauchy's Mean Value Theorem). If $f, g : D \to \mathbb{R}$ are continuous on [a, b] and differentiable on (a, b), then there exists a value $c \in (a, b)$ such that

$$f'(c) [g(b) - g(a)] = g'(c) [f(b) - f(a)]$$

or, when denominators are non-zero,

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Definition 6 (Uniform Differentiability). Let $f : [a, b] \to \mathbb{R}$. Then f is uniformly differentiable on [a, b] iff f is differentiable on [a, b] and, for every $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $x_1, x_2 \in [a, b]$ with $|x_1 - x_2| < \delta$, it must follow that

$$\left|\frac{f(x_1) - f(x_2)}{x_1 - x_2} - f'(x_1)\right| < \epsilon$$

Corollary 25. If $f: D \to \mathbb{R}$ is uniformly differentiable on [a, b], then f' is continuous on [a, b].

Definition 7 (Lipschitz Condition). Let $f: D \to \mathbb{R}$. If there are positive constants M and α such that for any $x_1, x_2 \in D$

$$|f(x_1) - f(x_2)| \le M \cdot |x_1 - x_2|^{\alpha}$$

then f is Lipschitz- α with constant M, written $f \in \operatorname{Lip}_M \alpha$.

Theorem 26. If $f \in \operatorname{Lip}_M \alpha$ on D, then

- 1. f is continuous,
- 2. if $\alpha > 1$, f is constant,

Corollary 27. If $f : [a, b] \to \mathbb{R}$ is differentiable, then $f \in \operatorname{Lip}_M 1$.

Theorem 28 (Rademacher's Theorem). If $f \in \operatorname{Lip}_M 1$, then f is differentiable almost everywhere.

Definition 8 (Higher Order Derivatives). The *n*th derivative of f(x), if it exists, is given by $f^{(n)}(x) = \frac{d}{dx}f^{(n-1)}(x)$ for n > 1 where $f^{(0)} = f$.

Theorem 29. Let $f : D \to \mathbb{R}$ be *m* times continuously differentiable. Then *f* has a root of multiplicity *m* at x = r iff $f^{(m)}(r) \neq 0$, but

$$f(r) = f'(r) = \dots = f^{(m-1)}(r) = 0$$

Theorem 30 (Taylor's Theorem or Extended Law of the Mean). Let $n \in \mathbb{N}$ and suppose that f has n + 1 derivatives on (a - h, a + h) for some h > 0. Then for $x \in (a - h, a + h)$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + R_{n}(x)$$

where

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

for some c between x and a.

Theorem 31 (L'Hôpital's Rule). Suppose that f and g are differentiable on an open interval I containing a, and that

$$\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x)$$

while $g'(x) \neq 0$ on I. Then, if the limit exists,

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}$$

Corollary 32. Let $n \in \mathbb{N}$. Then

$$\lim_{x \to \infty} \frac{x^n}{e^x} = 0 \quad and \quad \lim_{x \to \infty} \frac{\ln(x)}{\sqrt[n]{x}} = 0$$

Corollary 33. *If* f *is twice differentiable on an open interval* I *and* $x \in I$ *, then*

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

1.4 Riemann Integration