1 Theoretical Calculus

1.1 Limits

Definition 1 (Accumulation Point). Let $D \subseteq \mathbb{R}$. A point $a \in \mathbb{R}$ is an accumulation point of D iff every open interval containing a also contains a point $x \in D$ with $x \neq a$.
Definition 2. Let $f: D \rightarrow \mathbb{R}$ and a be an accumulation point of D. Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

iff for every $\epsilon>0$ there is a $\delta>0$ such that whenever $x \in D$ and $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.
Theorem 1 (Algebra of Limits). Suppose that $f, g: D \rightarrow \mathbb{R}$ both have finite limits at $x=a \in D$ and $c \in \mathbb{R}$. Then

- $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
- $\lim _{x \rightarrow a} f(x) \pm g(x)=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a} f(x) \cdot g(x)=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
- if $\lim _{x \rightarrow a} g(x) \neq 0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$

Theorem 2 ("Sandwich" Theorem). Suppose that $g(x) \leq f(x) \leq h(x)$ for all $x \in(a-h, a+h)$ for some $h>0$. If $\lim _{x \rightarrow a} g(x)=L=\lim _{x \rightarrow a} h(x)$, then $\lim _{x \rightarrow a} f(x)=L$.

1.2 Continuity

Definition 3. Let $f: D \rightarrow \mathbb{R}$ and a be an accumulation point of D. Then f is continuous at $x=a$ iff for every $\epsilon>0$ there is a $\delta>0$ such that whenever $x \in D$ and $|x-a|<\delta$, then $|f(x)-f(a)|<\epsilon$.
Theorem 3. Every real polynomial is continuous at every $x \in \mathbb{R}$.
Theorem 4 (Algebra of Continuity). Suppose that $f, g: D \rightarrow \mathbb{R}$ both are continuous at $x=a \in D$ and that $c \in \mathbb{R}$. Then

- $c f$ is continuous at a
- $f \pm g$ is continuous at a
- $f \cdot g$ is continuous at a
- if $g(a) \neq 0$, then f / g is continuous at a

Theorem 5 (Continuity of Composition). Let $f: A \rightarrow \mathbb{R}$ and $g: B \rightarrow \mathbb{R}$. Suppose that f is continuous at $x=a \in A$, that g is continuous at $x=f(a) \in B$, and that $f(A) \subseteq B$. Then $g \circ f$ is continuous at $x=a$.
Theorem 6. If a function f is continuous at a and ϕ is a function such that $\lim _{t \rightarrow t_{0}} \phi(t)=a$, then

$$
\lim _{t \rightarrow t_{0}} f(\phi(t))=f\left(\lim _{t \rightarrow t_{0}} \phi(t)\right)
$$

Theorem 7. If a function f is continuous on a closed, finite interval $[a, b]$, then f is bounded on $[a, b]$.
Theorem 8 (Intermediate Value Theorem). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and if k is between $f(a)$ and $f(b)$, then there exists $c \in(a, b)$ such that $f(c)=k$.
Corollary 9. Every odd degree real polynomial has a real root.
Theorem 10 (Extreme Value Theorem). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then

1. there exists $x_{m} \in[a, b]$ such that $f\left(x_{m}\right)=\min _{x \in[a, b]} f(x)$
2. there exists $x_{M} \in[a, b]$ such that $f\left(x_{M}\right)=\max _{x \in[a, b]} f(x)$

Definition 4 (Uniform Continuity). A function $f: D \rightarrow \mathbb{R}$ is uniformly continuous on D iff for every $\epsilon>0$ there is a $\delta>0$ such that whenever $x_{1}, x_{2} \in D$ and $\left|x_{1}-x_{2}\right|<\delta$, then $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon$.
Theorem 11. If f is continuous on $[a, b]$, then f is uniformly continuous on $[a, b]$.

1.3 The Derivative

Definition 5. Let $f: D \rightarrow \mathbb{R}$ and $a \in D$ be an accumulation point. Then

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

Theorem 12. If f is differentiable at $x=a$, then f is continuous at $x=a$.
Theorem 13 (Algebra of Derivatives). If $f, g: D \rightarrow \mathbb{R}$ are differentiable at $x=a$ and $c \in \mathbb{R}$, then at $x=a$,

- $(c f)^{\prime}=c\left(f^{\prime}\right)$
- $(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}$
- $(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}$
- if $g^{\prime}(a) \neq 0$, then $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g+f \cdot g^{\prime}}{g^{2}}$

Theorem 14 (The Chain Rule). Let $f: A \rightarrow B$ and $g: B \rightarrow \mathbb{R}$. Suppose that f is differentiable at $x=a \in A$ and that g is differentiable at $x=b=f(a) \in B$. Then $g \circ f$ is differentiable at $x=a$ and

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) \cdot f^{\prime}(a)
$$

Corollary 15. Let u be a differentiable function of x and $r \in \mathbb{R}$. Then, when defined,

$$
\begin{array}{ll}
\left(u^{r}\right)^{\prime}=r u^{r-1} \cdot u^{\prime} \\
\left(e^{u}\right)^{\prime}=e^{u} \cdot u^{\prime} & \\
\ln (u)^{\prime}=\frac{1}{u} \cdot u^{\prime} & \cos (u)^{\prime}=-\sin (u) \cdot u^{\prime} \\
\hline \sin (u)^{\prime}=\cos (u) \cdot u^{\prime} & \cot (u)^{\prime}=-\csc ^{2}(u) \cdot u^{\prime} \\
\tan (u)^{\prime}=\sec 2(u) \cdot u^{\prime} & \csc (u)^{\prime}=-\csc (u) \cot (u) \cdot u^{\prime} \\
\sec (u)^{\prime}=\sec (u) \tan (u) \cdot u^{\prime} & \cos ^{-1}(u)^{\prime}=\frac{-1}{\sqrt{1-u^{2}}} \cdot u^{\prime} \\
\hline \sin ^{-1}(u)^{\prime}=\frac{1}{\sqrt{1-u^{2}}} \cdot u^{\prime} & \cot ^{-1}(u)^{\prime}=\frac{-1}{1+u^{2}} \cdot u^{\prime} \\
\tan ^{-1}(u)^{\prime}=\frac{1}{1+u^{2}} \cdot u^{\prime} & \csc ^{-1}(u)^{\prime}=\frac{-1}{|u| \sqrt{u^{2}-1}} \cdot u^{\prime} \\
\sec ^{-1}(u)^{\prime}=\frac{1}{|u| \sqrt{u^{2}-1}} \cdot u^{\prime} &
\end{array}
$$

Theorem 16 (Inverse Function Theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable with $f^{\prime}(x) \neq 0$ for any $x \in[a, b]$. Then

- f is injective ($1-1$)
- f^{-1} is continuous on $f([a, b])$
- f^{-1} is differentiable on $f([a, b])$
- $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}$ where $y=f(x)$

Theorem 17. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ has an extremum at $c \in(a, b)$. If f is differentiable at $c \in(a, b)$, then $f^{\prime}(c)=0$.
Theorem 18 (Rolle's Theorem). If $f: D \rightarrow \mathbb{R}$ is continuous on $[a, b] \subseteq D$ and differentiable on (a, b) with $f(a)=f(b)$, then there exists a value $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Theorem 19 (Mean Value Theorem). If $f: D \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b), then there exists a value $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Corollary 20. If $f: D \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b), then there exists a value $\theta \in(0,1)$ such that

$$
f(a+h)=f(a)+h \cdot f^{\prime}(a+\theta h)
$$

Corollary 21. If $f: D \rightarrow \mathbb{R}$ is continuous on $[a, b]$, differentiable on (a, b), and $f^{\prime}(x)=0$, then f is a constant function.
Corollary 22. If $f, g: D \rightarrow \mathbb{R}$ are continuous on $[a, b]$, differentiable on (a, b), and $f^{\prime}(x)=g^{\prime}(x)$ on D, then $f(x)=$ $g(x)+k$ on D where k is a constant.

Corollary 23. If $f: D \rightarrow \mathbb{R}$ is differentiable on $[a, b]$, then f^{\prime} has the Intermediate Value Property.
Theorem 24 (Cauchy's Mean Value Theorem). If $f, g: D \rightarrow \mathbb{R}$ are continuous on $[a, b]$ and differentiable on (a, b), then there exists a value $c \in(a, b)$ such that

$$
f^{\prime}(c)[g(b)-g(a)]=g^{\prime}(c)[f(b)-f(a)]
$$

or, when denominators are non-zero,

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

Definition 6 (Uniform Differentiability). Let $f:[a, b] \rightarrow \mathbb{R}$. Then f is uniformly differentiable on $[a, b]$ iff f is differentiable on $[a, b]$ and, for every $\epsilon>0$, there exists $a \delta>0$ such that whenever $x_{1}, x_{2} \in[a, b]$ with $\left|x_{1}-x_{2}\right|<\delta$, it must follow that

$$
\left|\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}-f^{\prime}\left(x_{1}\right)\right|<\epsilon
$$

Corollary 25. If $f: D \rightarrow \mathbb{R}$ is uniformly differentiable on $[a, b]$, then f^{\prime} is continuous on $[a, b]$.
Definition 7 (Lipschitz Condition). Let $f: D \rightarrow \mathbb{R}$. If there are positive constants M and α such that for any $x_{1}, x_{2} \in D$

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq M \cdot\left|x_{1}-x_{2}\right|^{\alpha}
$$

then f is Lipschitz- α with constant M, written $f \in \operatorname{Lip}_{M} \alpha$.
Theorem 26. If $f \in \operatorname{Lip}_{M} \alpha$ on D, then

1. f is continuous,
2. if $\alpha>1, f$ is constant,

Corollary 27. If $f:[a, b] \rightarrow \mathbb{R}$ is differentiable, then $f \in \operatorname{Lip}_{M} 1$.
Theorem 28 (Rademacher's Theorem). If $f \in \operatorname{Lip}_{M} 1$, then f is differentiable almost everywhere.
Definition 8 (Higher Order Derivatives). The nth derivative of $f(x)$, if it exists, is given by $f^{(n)}(x)=\frac{d}{d x} f^{(n-1)}(x)$ for $n>1$ where $f^{(0)}=f$.

Theorem 29. Let $f: D \rightarrow \mathbb{R}$ be m times continuously differentiable. Then f has a root of multiplicity m at $x=r$ iff $f^{(m)}(r) \neq 0$, but

$$
f(r)=f^{\prime}(r)=\cdots=f^{(m-1)}(r)=0
$$

Theorem 30 (Taylor's Theorem or Extended Law of the Mean). Let $n \in \mathbb{N}$ and suppose that f has $n+1$ derivatives on $(a-h, a+h)$ for some $h>0$. Then for $x \in(a-h, a+h)$

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+R_{n}(x)
$$

where

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

for some c between x and a.

Theorem 31 (L'Hôpital's Rule). Suppose that f and g are differentiable on an open interval I containing a, and that

$$
\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x)
$$

while $g^{\prime}(x) \neq 0$ on I. Then, if the limit exists,

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

Corollary 32. Let $n \in \mathbb{N}$. Then

$$
\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{\ln (x)}{\sqrt[n]{x}}=0
$$

Corollary 33. If f is twice differentiable on an open interval I and $x \in I$, then

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

1.4 Riemann Integration

