
1 Theoretical Calculus

1.1 Limits

Definition 1 (Accumulation Point). Let D ⊆ R. A point a ∈ R is an accumulation point ofD iff every open interval
containinga also contains a pointx ∈ D with x 6= a.

Definition 2. Letf : D → R anda be an accumulation point ofD. Then

lim
x→a

f(x) = L

iff for everyε > 0 there is aδ > 0 such that wheneverx ∈ D and0 < |x− a| < δ, then|f(x)− L| < ε.

Theorem 1(Algebra of Limits). Suppose thatf, g : D → R both have finite limits atx = a ∈ D andc ∈ R. Then

• lim
x→a

c f(x) = c lim
x→a

f(x)

• lim
x→a

f(x)± g(x) = lim
x→a

f(x)± lim
x→a

g(x)

• lim
x→a

f(x) · g(x) = lim
x→a

f(x) · lim
x→a

g(x)

• if lim
x→a

g(x) 6= 0, then lim
x→a

f(x)
g(x)

=
lim
x→a

f(x)

lim
x→a

g(x)

Theorem 2 (“Sandwich” Theorem). Suppose thatg(x) ≤ f(x) ≤ h(x) for all x ∈ (a − h, a + h) for someh > 0. If
lim
x→a

g(x) = L = lim
x→a

h(x), then lim
x→a

f(x) = L.

1.2 Continuity

Definition 3. Letf : D → R anda be an accumulation point ofD. Thenf is continuous atx = a iff for everyε > 0 there
is a δ > 0 such that wheneverx ∈ D and|x− a| < δ, then|f(x)− f(a)| < ε.

Theorem 3. Every real polynomial is continuous at everyx ∈ R.

Theorem 4(Algebra of Continuity). Suppose thatf, g : D → R both are continuous atx = a ∈ D and thatc ∈ R. Then

• cf is continuous ata

• f ± g is continuous ata

• f · g is continuous ata

• if g(a) 6= 0, thenf/g is continuous ata

Theorem 5 (Continuity of Composition). Let f : A → R andg : B → R. Suppose thatf is continuous atx = a ∈ A,
thatg is continuous atx = f(a) ∈ B, and thatf(A) ⊆ B. Theng ◦ f is continuous atx = a.

Theorem 6. If a functionf is continuous ata andφ is a function such thatlim
t→t0

φ(t) = a, then

lim
t→t0

f (φ(t)) = f

(
lim
t→t0

φ(t)
)

Theorem 7. If a functionf is continuous on a closed, finite interval[a, b], thenf is bounded on[a, b].

Theorem 8 (Intermediate Value Theorem). If f : [a, b] → R is continuous and ifk is betweenf(a) andf(b), then there
existsc ∈ (a, b) such thatf(c) = k.

Corollary 9. Every odd degree real polynomial has a real root.

Theorem 10(Extreme Value Theorem). If f : [a, b] → R is continuous, then

1. there existsxm ∈ [a, b] such thatf(xm) = min
x∈[a,b]

f(x)

2. there existsxM ∈ [a, b] such thatf(xM ) = max
x∈[a,b]

f(x)

Definition 4 (Uniform Continuity). A functionf : D → R is uniformly continuouson D iff for everyε > 0 there is a
δ > 0 such that wheneverx1, x2 ∈ D and|x1 − x2| < δ, then|f(x1)− f(x2)| < ε.

Theorem 11. If f is continuous on[a, b], thenf is uniformly continuous on[a, b].
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1.3 The Derivative

Definition 5. Letf : D → R anda ∈ D be an accumulation point. Then

f ′(a) = lim
x→a

f(x)− f(a)
x− a

= lim
h→0

f(a + h)− f(a)
h

Theorem 12. If f is differentiable atx = a, thenf is continuous atx = a.

Theorem 13(Algebra of Derivatives). If f, g : D → R are differentiable atx = a andc ∈ R, then atx = a,

• (cf)′ = c(f ′)

• (f ± g)′ = f ′ ± g′

• (f · g)′ = f ′ · g + f · g′

• if g′(a) 6= 0, then

(
f

g

)′
=

f ′ · g + f · g′

g2

Theorem 14(The Chain Rule). Letf : A → B andg : B → R. Suppose thatf is differentiable atx = a ∈ A and thatg
is differentiable atx = b = f(a) ∈ B. Theng ◦ f is differentiable atx = a and

(g ◦ f)′(a) = g′ (f(a)) · f ′(a)

Corollary 15. Letu be a differentiable function ofx andr ∈ R. Then, when defined,

(ur)′ = r ur−1 · u′
(eu)′ = eu · u′

ln(u)′ =
1
u
· u′

sin(u)′ = cos(u) · u′ cos(u)′ = − sin(u) · u′
tan(u)′ = sec2(u) · u′ cot(u)′ = − csc2(u) · u′
sec(u)′ = sec(u) tan(u) · u′ csc(u)′ = − csc(u) cot(u) · u′

sin−1(u)′ =
1√

1− u2
· u′ cos−1(u)′ =

−1√
1− u2

· u′

tan−1(u)′ =
1

1 + u2
· u′ cot−1(u)′ =

−1
1 + u2

· u′

sec−1(u)′ =
1

|u|
√

u2 − 1
· u′ csc−1(u)′ =

−1
|u|
√

u2 − 1
· u′

Theorem 16(Inverse Function Theorem). Letf : [a, b] → R be differentiable withf ′(x) 6= 0 for anyx ∈ [a, b]. Then

• f is injective (1–1)

• f−1 is continuous onf([a, b])

• f−1 is differentiable onf([a, b])

• (f−1)′(y) =
1

f ′(x)
wherey = f(x)

Theorem 17. Suppose thatf : [a, b] → R has an extremum atc ∈ (a, b). If f is differentiable atc ∈ (a, b), thenf ′(c) = 0.

Theorem 18(Rolle’s Theorem). If f : D → R is continuous on[a, b] ⊆ D and differentiable on(a, b) with f(a) = f(b),
then there exists a valuec ∈ (a, b) such thatf ′(c) = 0.

Theorem 19(Mean Value Theorem). If f : D → R is continuous on[a, b] and differentiable on(a, b), then there exists a
valuec ∈ (a, b) such that

f(b)− f(a)
b− a

= f ′(c).
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Corollary 20. If f : D → R is continuous on[a, b] and differentiable on(a, b), then there exists a valueθ ∈ (0, 1) such
that

f(a + h) = f(a) + h · f ′(a + θh).

Corollary 21. If f : D → R is continuous on[a, b], differentiable on(a, b), andf ′(x) = 0, thenf is a constant function.

Corollary 22. If f, g : D → R are continuous on[a, b], differentiable on(a, b), andf ′(x) = g′(x) on D, thenf(x) =
g(x) + k onD wherek is a constant.

Corollary 23. If f : D → R is differentiable on[a, b], thenf ′ has theIntermediate Value Property.

Theorem 24(Cauchy’s Mean Value Theorem). If f, g : D → R are continuous on[a, b] and differentiable on(a, b), then
there exists a valuec ∈ (a, b) such that

f ′(c) [g(b)− g(a)] = g′(c) [f(b)− f(a)]

or, when denominators are non-zero,
f(b)− f(a)
g(b)− g(a)

=
f ′(c)
g′(c)

Definition 6 (Uniform Differentiability). Let f : [a, b] → R. Thenf is uniformly differentiable on[a, b] iff f is differen-
tiable on[a, b] and, for everyε > 0, there exists aδ > 0 such that wheneverx1, x2 ∈ [a, b] with |x1 − x2| < δ, it must
follow that ∣∣∣∣f(x1)− f(x2)

x1 − x2
− f ′(x1)

∣∣∣∣ < ε

Corollary 25. If f : D → R is uniformly differentiable on[a, b], thenf ′ is continuous on[a, b].

Definition 7 (Lipschitz Condition). Letf : D → R. If there are positive constantsM andα such that for anyx1, x2 ∈ D

|f(x1)− f(x2)| ≤ M · |x1 − x2|α

thenf is Lipschitz-α with constantM, writtenf ∈ LipM α.

Theorem 26. If f ∈ LipM α onD, then

1. f is continuous,

2. if α > 1, f is constant,

Corollary 27. If f : [a, b] → R is differentiable, thenf ∈ LipM 1.

Theorem 28(Rademacher’s Theorem). If f ∈ LipM 1, thenf is differentiablealmost everywhere.

Definition 8 (Higher Order Derivatives). Thenth derivative off(x), if it exists, is given byf (n)(x) =
d

dx
f (n−1)(x) for

n > 1 wheref (0) = f .

Theorem 29. Let f : D → R bem times continuously differentiable. Thenf hasa root of multiplicitym at x = r iff
f (m)(r) 6= 0, but

f(r) = f ′(r) = · · · = f (m−1)(r) = 0

Theorem 30(Taylor’s Theorem or Extended Law of the Mean). Let n ∈ N and suppose thatf hasn + 1 derivatives on
(a− h, a + h) for someh > 0. Then forx ∈ (a− h, a + h)

f(x) =
n∑

k=0

f (k)(a)
k!

(x− a)k + Rn(x)

where

Rn(x) =
f (n+1)(c)
(n + 1)!

(x− a)n+1

for somec betweenx anda.
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Theorem 31(L’H ôpital’s Rule). Suppose thatf andg are differentiable on an open intervalI containinga, and that

lim
x→a

f(x) = 0 = lim
x→a

g(x)

whileg′(x) 6= 0 on I. Then, if the limit exists,

lim
x→a

f ′(x)
g′(x)

= lim
x→a

f(x)
g(x)

Corollary 32. Letn ∈ N. Then

lim
x→∞

xn

ex
= 0 and lim

x→∞

ln(x)
n
√

x
= 0

Corollary 33. If f is twice differentiable on an open intervalI andx ∈ I, then

f ′′(x) = lim
h→0

f(x + h)− 2f(x) + f(x− h)
h2

1.4 Riemann Integration
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