Types of Convergence

Let $[a, b] \subset \mathcal{R}$ be such that $m([a, b])<\infty$. Let $\left\{f_{n}\right\}$ be a sequence of real-valued functions that is finite almost everywhere on $[a, b]$.

Pointwise

The sequence $\left\{f_{n}\right\}$ converges pointwise to f on $[a, b]$ if, for every $x \in[a, b], \lim _{n} f_{n}(x)=f(x)$; i.e, for every $\epsilon>0$ and $x \in[a, b]$, there is an $n^{*}=n^{*}(\epsilon, x)>0$, such that if $n>n^{*}$, then $\left|f_{n}(x)-f(x)\right|<\epsilon$.

Uniform

The sequence $\left\{f_{n}\right\}$ converges uniformly to f on $[a, b]$ if, for every $\epsilon>0$, there is an $n^{*}=n^{*}(\epsilon)>0$, such that for any $x \in[a, b]$ and $n>n^{*}$, then $\left|f_{n}(x)-f(x)\right|<\epsilon$.

Almost Everywhere

The sequence $\left\{f_{n}\right\}$ converges almost everywhere to f on $[a, b]$ if f_{n} converges pointwise to f on $[a, b] \backslash E$ and $m(E)=0$.

Almost Uniform

The sequence $\left\{f_{n}\right\}$ converges almost uniformly to f on $[a, b]$ if, for any $\epsilon>0$ there is a set $E \subseteq[a, b]$ with $m(E)<\epsilon$ and f_{n} converges uniformly to f on $[a, b] \backslash E$.

In Measure

The sequence $\left\{f_{n}\right\}$ converges in measure to f on $[a, b]$ if, for any $\epsilon>0$,

$$
\lim _{n} m\left(\left\{x \in[a, b]:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right)=0
$$

In Mean

The sequence $\left\{f_{n}\right\}$ converges in mean to f on $[a, b]$ if

$$
\lim _{n} \int_{[a, b]}\left|f_{n}(x)-f(x)\right| d x=0
$$

Problems

Find the limit f and determine what type of convergence is possible.

1. Let $f_{n}(x)=x^{n}$ on $[0,1]$ for $n=0,1,2, \ldots$.
2. Let $f_{1}=\chi_{[0,1]}, f_{2}=\chi_{[0,1 / 2)}, f_{3}=\chi_{[1 / 2,1]}, f_{4}=\chi_{[0,1 / 4)}, f_{5}=\chi_{[1 / 4,1 / 2)}, f_{6}=\chi_{[1 / 2,3 / 4)}, f_{7}=\chi_{[3 / 4,1]}$, and so forth.
3. Let f_{n} be even, $f_{n}(x)=0$ for $x>\frac{1}{n}$, and, for $0 \leq x \leq \frac{1}{n}$, define $f_{n}(x)=n \cdot(1-n x)$. (Who was Paul Dirac?)
4. Let $f_{n}(x)=\left\{\begin{array}{cclc}0 & 0 & \leq x< & \frac{1}{2}-\frac{1}{2^{n}} \\ 1+2^{n}\left(x-\frac{1}{2}\right) & \frac{1}{2}-\frac{1}{2^{n}} & \leq x< & \frac{1}{2} \\ 1-2^{n}\left(x-\frac{1}{2}\right) & \frac{1}{2}^{n} & \leq x< & \frac{1}{2}+\frac{1}{2^{n}} \\ 0 & \frac{1}{2}^{2} \frac{1}{2}^{n} & \leq x \leq & 1\end{array}\right.$
5. Let $f_{n}(x)=\left\{\begin{array}{cccc}0 & 0 & \leq x< & \frac{1}{2}-\frac{1}{2^{n}} \\ 2^{n+1}+4^{n}(2 x-1) & \frac{1}{2}-\frac{1}{2^{n}} & \leq x< & \frac{1}{2}^{2} \\ 2^{n+1}-4^{n}(2 x+1) & \frac{1}{2}^{2} & \leq x< & \frac{1}{2}+\frac{1}{2^{n}} \\ 0 & \frac{1}{2}_{2}+\frac{1}{2}^{n} & \leq x \leq & 1\end{array}\right.$

Create examples or counterexamples for each of the following statements. Assume $m([a, b])<\infty$ and f_{n} is realvalued and finite almost everywhere.
5. f_{n} converges almost everwhere if and only if f_{n} converges in measure.
6. f_{n} converges almost everwhere if and only if f_{n} converges in mean.
7. f_{n} converges almost uniformly if and only if f_{n} converges in mean.
.375 in by 1.905 in (measure scaled 750)

A Nonsequiter

Proposition. A monotone function can only have jump discontinuities.
Proof. WOLOG Assume f is increasing. Let x^{*} be an interior point of dom (f). Let $\left\{x_{n}\right\}$ be a strictly monotone increasing sequence converging to x^{*}. (Justify each of the following steps.)

1. Then $\left\{f\left(x_{n}\right)\right\}$ is monotone increasing and bounded.
2. Hence $\left\{f\left(x_{n}\right)\right\}$ has a limit, L_{-}.
3. Suppose $x_{n}<x<x^{*}$. Then there exist an $m>n$ such that $x<x_{m}<x^{*}$. Whence, we have $f\left(x_{n}\right) \leq f(x) \leq f\left(x_{m}\right) \leq L_{-}$.
4. Thus $\lim _{x \nearrow x^{*}} f(x)=L_{-}$.
5. Analogously, $\lim _{x \backslash x^{*}} f(x)=L_{+}$.
6. If $L_{-}=L_{+}$, then x^{*} is a point of continuity of f, otherwise $L_{-}<L_{+}$, and f has a jump of $L_{+}-L_{-}$at x^{*}.
