Types of Convergence

Let $[a,b] \subset \mathcal{R}$ be such that $m([a,b]) < \infty$. Let $\{f_n\}$ be a sequence of real-valued functions that is finite almost everywhere on [a,b].

Pointwise

The sequence $\{f_n\}$ converges pointwise to f on [a, b] if, for every $x \in [a, b]$, $\lim_n f_n(x) = f(x)$; i.e, for every $\epsilon > 0$ and $x \in [a, b]$, there is an $n^* = n^*(\epsilon, x) > 0$, such that if $n > n^*$, then $|f_n(x) - f(x)| < \epsilon$.

Uniform

The sequence $\{f_n\}$ converges uniformly to f on [a, b] if, for every $\epsilon > 0$, there is an $n^* = n^*(\epsilon) > 0$, such that for any $x \in [a, b]$ and $n > n^*$, then $|f_n(x) - f(x)| < \epsilon$.

Almost Everywhere

The sequence $\{f_n\}$ converges almost everywhere to f on [a, b] if f_n converges pointwise to f on $[a, b] \setminus E$ and m(E) = 0.

Almost Uniform

The sequence $\{f_n\}$ converges almost uniformly to f on [a, b] if, for any $\epsilon > 0$ there is a set $E \subseteq [a, b]$ with $m(E) < \epsilon$ and f_n converges uniformly to f on $[a, b] \setminus E$.

In Measure

The sequence $\{f_n\}$ converges in measure to f on [a, b] if, for any $\epsilon > 0$,

$$\lim_{n} m(\{x \in [a, b] : |f_n(x) - f(x)| > \epsilon\}) = 0$$

In Mean

The sequence $\{f_n\}$ converges in mean to f on [a, b] if

$$\lim_{n} \int_{[a,b]} |f_n(x) - f(x)| \, dx = 0$$

Problems

Find the limit f and determine what type of convergence is possible.

- 1. Let $f_n(x) = x^n$ on [0, 1] for n = 0, 1, 2, ...
- 2. Let $f_1 = \chi_{[0,1]}$, $f_2 = \chi_{[0,1/2)}$, $f_3 = \chi_{[1/2,1]}$, $f_4 = \chi_{[0,1/4)}$, $f_5 = \chi_{[1/4,1/2)}$, $f_6 = \chi_{[1/2,3/4)}$, $f_7 = \chi_{[3/4,1]}$, and so forth.
- 3. Let f_n be even, $f_n(x) = 0$ for $x > \frac{1}{n}$, and, for $0 \le x \le \frac{1}{n}$, define $f_n(x) = n \cdot (1 nx)$. (Who was Paul Dirac?)

4. Let
$$f_n(x) = \begin{cases} 0 & 0 \leq x < \frac{1}{2} - \frac{1}{2^n} \\ 1 + 2^n \left(x - \frac{1}{2}\right) & \frac{1}{2} - \frac{1}{2^n} \leq x < \frac{1}{2} \\ 1 - 2^n \left(x - \frac{1}{2}\right) & \frac{1}{2} & \leq x < \frac{1}{2} + \frac{1}{2^n} \\ 0 & \frac{1}{2} + \frac{1}{2^n} \leq x < 1 \end{cases}$$
5. Let
$$f_n(x) = \begin{cases} 0 & 0 \leq x < \frac{1}{2} - \frac{1}{2^n} \\ 2^{n+1} + 4^n (2x - 1) & \frac{1}{2} - \frac{1}{2^n} \leq x < \frac{1}{2} - \frac{1}{2^n} \\ 2^{n+1} - 4^n (2x + 1) & \frac{1}{2} \leq x < \frac{1}{2} + \frac{1}{2^n} \\ 0 & \frac{1}{2} + \frac{1}{2^n} \leq x < 1 \end{cases}$$

Create examples or counterexamples for each of the following statements. Assume $m([a, b]) < \infty$ and f_n is real-valued and finite almost everywhere.

- 5. f_n converges almost everwhere if and only if f_n converges in measure.
- 6. f_n converges almost everwhere if and only if f_n converges in mean.
- 7. f_n converges almost uniformly if and only if f_n converges in mean.

.375in by 1.905in (measure scaled 750)

A Nonsequiter

PROPOSITION. A monotone function can only have jump discontinuities.

PROOF. WOLOG Assume f is increasing. Let x^* be an interior point of dom(f). Let $\{x_n\}$ be a strictly monotone increasing sequence converging to x^* . (Justify each of the following steps.)

- 1. Then $\{f(x_n)\}$ is monotone increasing and bounded.
- 2. Hence $\{f(x_n)\}$ has a limit, L_- .
- 3. Suppose $x_n < x < x^*$. Then there exist an m > n such that $x < x_m < x^*$. Whence, we have $f(x_n) \le f(x) \le f(x_m) \le L_-$.
- 4. Thus $\lim_{x \nearrow x^*} f(x) = L_{-}$.
- 5. Analogously, $\lim_{x \searrow x^*} f(x) = L_+$.
- 6. If $L_{-} = L_{+}$, then x^{*} is a point of continuity of f, otherwise $L_{-} < L_{+}$, and f has a jump of $L_{+} L_{-}$ at x^{*} .