Rules of Differentiation Summary

Definition

The function $f(x)$ has a derivative $f^{\prime}(x)$ if and only if

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Results

Assume that u is a differentiable function of x. Then

$$
\begin{align*}
\left(u^{n}\right)^{\prime} & =n u^{n-1} \cdot(u)^{\prime} \tag{1}\\
\left(e^{u}\right)^{\prime} & =e^{u} \cdot(u)^{\prime} \tag{2}\\
(\ln (u))^{\prime} & =\frac{1}{u} \cdot(u)^{\prime} \tag{3}
\end{align*}
$$

Reductions

Assume that u and v are differentiable functions of x and that c is a real number. Then

$$
\begin{array}{rlr}
(c \cdot u)^{\prime} & =c \cdot(u)^{\prime} & \text { Constant Multiple Rule } \\
(u \pm v)^{\prime} & =(u)^{\prime} \pm(v)^{\prime} & \text { Sum Rule } \\
(u \cdot v)^{\prime} & =(u)^{\prime} \cdot v+u \cdot(v)^{\prime} & \text { Product Rule } \\
\left(\frac{u}{v}\right)^{\prime} & =\frac{(u)^{\prime} \cdot v-u \cdot(v)^{\prime}}{v^{2}} & \text { Quotient Rule } \tag{7}
\end{array}
$$

The Chain Rule I: Suppose that u and v are differentiable functions for all x. Then $u(v(x))$ is differentiable, i.e., $(u \circ v)^{\prime}$ exists, and

$$
\begin{equation*}
\frac{d u}{d x}=\frac{d u}{d v} \cdot \frac{d v}{d x} \tag{8}
\end{equation*}
$$

The Chain Rule II: Suppose that $f(x)$ and $g(x)$ are differentiable functions for all x. Then $f \circ g$ is a differentiable function and

$$
f^{\prime}(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Problems

1. The Quotient Rule is a combination of the Product and Chain Rules. Fill in reasons each step is valid (from algebra or a derivative rule):

$$
\begin{aligned}
\left(\frac{u}{v}\right)^{\prime} & =\left(u \cdot(v)^{-1}\right)^{\prime} \\
& =(u)^{\prime} \cdot v^{-1}+u \cdot\left(v^{-1}\right)^{\prime} \\
& =(u)^{\prime} \cdot v^{-1}+u \cdot\left(-1 \cdot v^{-2} \cdot v^{\prime}\right) \\
& =\frac{u^{\prime}}{v}-\frac{u \cdot v^{\prime}}{v^{2}} \\
\left(\frac{u}{v}\right)^{\prime} & =\frac{(u)^{\prime} \cdot v-u \cdot(v)^{\prime}}{v^{2}}
\end{aligned}
$$

