MAT 4010/5160 — §101 Complex Variables, Spring '15
deserve neither liberty nor safety" — Benjamin Franklin. (1706-1790)
Homework List
✈ Jump down to '♞ This Week.'
Week 1
- Monday, Jan 12 — First day of class
- Carefully read the Class Information slides.
- Watch the Khan Academy videos:
- Read §1.1.
(The text lists for $155 but there are new copies at Amazon.com for under $60.) - §1.1, pg 7. #1, 2, 9, 15, 25, 31, 33, 59.
- Wednesday, Jan 14
§1.2, pg 13. #1, 3, 12, 15, 17→25 odd, 27, 33b, 34b, 38, 42, 45, 50.
- Friday, Jan 16
§1.3, pg 20. #1, 3, 9, 11, 13, 15, 19, 27, 33, 37, 38, 45.
§1.3, pg 20. #49: Prove Lagrange's Trigonometric Identity \[ \sum_{k=0}^n \cos(k\theta) = \frac12 + \frac{\sin\big((n+\frac12)\theta\big)}{2\sin\big(\frac12 \theta\big)}, \qquad \theta\in(0,2\pi) \] which is very important in Fourier Analysis.- Recall the geometric sum formula \[ 1+z+z^2+\cdots + z^n = \frac{1-z^{n+1}}{1-z} \]
- Substitute \(z=e^{i\theta}\)
- Simplify and consider the real part of the formula
- Monday, Jan 19 — No class: Dr Martin Luther King, Jr, Day
- Wednesday, Jan 21
§1.4, pg 25. #1, 7, 13, 17, 19, 21, 23, 28, 31, 37, 39.
- Friday, Jan 23
§1.5, pg. #1, 3, 5, 10, 11, 19, 23, 25 (for 19 & 23), 27, 32, 34, 40, 46.
- Monday, Jan 26
◊ Look at the complex functions on the "Animated Function Families" web page.
§2.1, pg 52. #1, 3, 6, 11, 20, 26, 29, 36, 39.
§2.2, pg 60. #1, 3, 9, 10, 15, 17, 28.
- Wednesday, Jan 28
§2.2, pg 60. #27, 29, 31, 35.
§2.3, pg 69. #1, 3, 6, 13, 23, 24, 33. For algebraists: #40.
¤ Fig 2.2.7, pg 59. Maple version (copy/paste into Maple):- f := z -> z^2 + I*z - Re(z);
- C := t -> 2*exp(I*t);
- plot([Re(f(C(t))),Im(f(C(t))), t=0..2*Pi]);
- Friday, Jan 30
§3.1.1, pg 118. #1, 3, 8, 9, 11, 15, 18, 20, 21, 25.
- Monday, Feb 2
§3.1.2, pg 118. #27, 29, 31, 36, 38, 53, 57, 61.
- Wednesday, Feb 4
◊ Möbius Transformations Group Project: Due Wednesday, Feb 11.
§3.2, pg 128. #1, 5, 9, 18, 22, 23, 33.
- Friday, Feb 6
§3.3, pg 135. #1, 3, 7, 9, 17, 21, 25, LA 35, 36. (LA = Look at)
- Monday, Feb 9
§3.4, pg 140. #1, 5, 6, 11, 18, 27.
- Wednesday, Feb 11
§4.1, pg 164. #5, 7, 9, 11, 15, 17, 18, 20, 23, 25, 29, 31, 35, LA 50.
- Friday, Feb 13 — Paraskevidekatriaphobia!
§4.1, pg 164. #3 (cf. \(\sinh(i t)\)), 4, 13, 37, 57→ 65 odd.
¤ Maple:- Principal branch of complex log: ln(a+b*I) (capital 'I')
- numerical aaproximation: evalf(L) (or use decimals in the numbers)
- Eg: \(\ln(2.0+3.0\cdot I) = 1.282474679 + 0.9827937232\,I\)
- Monday, Feb 16
§4.3, pg 182. #1, 5, 9, 15, 21, 33.
§5.1, pg 207. #8, 9, 11, 13, 23, 27, 31, 33.
- Wednesday, Feb 18 — It's "Elm Farm Ollie Day!"
§5.2, pg 216. #1→15 odd.
- Friday, Feb 20
◊ Test I is next Friday
§5.2, pg 216. #2→14 even.
- Monday, Feb 23
§5.3, pg 224. #1, 3, 5, 9, 13, 16a.
- Wednesday, Feb 25
§5.3, pg 224. #11, 15, 18, 19, 23, 25, 31.
¤ An old test (with a different textbook) and a test from a far away class live in "Quiz Test" in the Class Notes directory.
- Friday, Feb 27
¡Test I istodayMonday (c.f. Weather.com)! — A chance to demonstrate your excellence!
◊ Review Quiz:- Chapter 1: pg 43.
- Chapter 2: pg 100.
- Chapter 3: pg 148.
- Chapter 4: pg 198.
- Chapter 5: pg 254.
- Monday, Mar 2
¡Test I is today! — A chance to demonstrate your excellence!
¤ Test 1 Topics list
- Wednesday, Mar 4
§5.4, pg 231. #1→19 odd.
- Friday, Mar 6
§5.4, pg 231. #27, 28, 29, LA 31.
◊ How would you prove the result:
Theorem. Let \(f\) be continuous on the domain \(D\). Then \(f\) has an antiderivative on \(D\) iff \(f\) is independent of path on \(D\).
☝ Saturday, March 14, is \(\large\pi\)-Day of the Century! 3.14.15 @ 9:26:53.
Week 9
- Monday, Mar 16
§5.5, pg 241. #1, 3, 5, 7, 15, 28.
- Wednesday, Mar 18
§5.5, pg 241. #29, 30.
- Friday, Mar 20
§5.5, pg 241. #11, 13, 17, 19.
- Monday, Mar 23
◊ Chapter 5 Review Quiz, pg 254. #1→ 20.
§5.6, pg 252. #1, 5. These are for physics majors.
Happy Birthday to Joseph Louiville (24 Mar, 1809)
- Wednesday, Mar 25
- Friday, Mar 27
◊ Project day. Newton Basins. Due Wed, April 1.
- Monday, Mar 30
◊ Project day. Newton Basins
- Wednesday, Apr 1 — Hilaria!
§6.2, pg 275. #1, 3, 5, 11, 13, 25, 31, 36.
- Friday, Apr 3
§5.5, pg 241. #32, 34.
¤ Prove the real variables trigonometic identity \(~\sin(2x) = 2\sin(x)\cos(x)~\) holds for all \(z\in\mathbb{Z}\) using the Identity Theorem.
- Monday, Apr 6
¤ No classes — Easter Holiday.
- Wednesday, Apr 8
§6.3, pg 286. #1, 3, 7, 11, 17, 27.
- Friday, Apr 10
§6.3, pg 286. #29, 31, 33, 35→38 [Maple syntax: series(fcn, var=center, order)].
- Monday, Apr 13
§6.3, pg 286. #32.
¤ Set \(f(z)=\dfrac{1}{(z-1)(z-3)^2}\).- Find a Laurent expansion around the point \(z=3\).
- What is the annulus for this expansion?
- Wednesday, Apr 15 — Tax Day.
§6.4, pg 292. #1, 3, 5, 7, 12, 15, 18, 26, LA 33.
- Friday, Apr 17
¡Test II available!
◊ Cauchy's Residue Thm
- Monday, Apr 20
◊ Real Integrals via Residues
- Wednesday, Apr 22
◊ Summations via Residues
- Friday, Apr 24
¡Test II solutions are due!
¤ Integral and Summation Exercises:- \(\displaystyle \int_0^\infty \frac{2x^2-1}{x^4+5x^2+4}\,dx \qquad\qquad\qquad \text{Answer: } \pi/4\)
- \(\displaystyle \int_{-\infty}^\infty \frac{x}{(x^2+1)(x^2+2x+2)}\,dx \qquad\qquad \text{Answer: } -\pi/5\)
- \(\displaystyle \int_0^\infty \frac{1}{x^4+1}\,dx \qquad\qquad\qquad\qquad \text{Answer: } \pi\sqrt{2}\,/4\)
- \(\displaystyle \int_{-\infty}^\infty \frac{\sin(x)}{x^2+4x+5}\,dx \qquad\qquad\qquad \text{Answer: } -\pi/(e\cdot\sin(2))\)
- \(\displaystyle \int_{-\infty}^\infty \frac{x\sin(\pi x)}{x^2+2x+5}\,dx \qquad\qquad\qquad \text{Answer: } -\pi\,e^{-2\pi}\)
- \(\displaystyle \int_{-\pi}^\pi \frac{1}{1+\sin^2(x)}\,dx \qquad\qquad\qquad \text{Answer: } \sqrt{2}\,\pi\)
- \(\displaystyle \int_{0}^{2\pi} \frac{\cos^2(3x)}{5-4\cos(2x)}\,dx \qquad\qquad\qquad \text{Answer: } 3\pi/8\)
- \(\displaystyle \sum_{n=1}^\infty \frac{1}{n^4} \qquad\qquad\qquad\qquad\qquad\qquad \text{Answer: } \pi^4/90\)
- \(\displaystyle \int_0^\infty \frac{2x^2-1}{x^4+5x^2+4}\,dx \qquad\qquad\qquad \text{Answer: } \pi/4\)
- Monday, Apr 27
¤ Wilkinson's polynomial*, \[ \begin{split} w(z) =\ &z^{20} - 210\, z^{19} + 20615\, z^{18} - 1256850\, z^{17} + 53327946\, z^{16} - 1672280820\, z^{15} \\ &+ 40171771630\, z^{14} - 756111184500\, z^{13} + 11310276995381\, z^{12} - 135585182899530\, z^{11} \\ &+ 1307535010540395\, z^{10} - 10142299865511450\, z^9 + 63030812099294896\, z^8 - 311333643161390640\, z^7 \\ &+ 1206647803780373360\, z^6 - 3599979517947607200\, z^5 + 8037811822645051776\, z^4 - 12870931245150988800\, z^3 \\ &+ 13803759753640704000\, z^2 - 8752948036761600000\, z + 2432902008176640000 \end{split} \] (w := z^20 - 210 z^19 + 20615 z^18 - 1256850 z^17 + 53327946 z^16 - 1672280820 z^15 + 40171771630 z^14 - 756111184500 z^13 + 11310276995381 z^12 - 135585182899530 z^11 + 1307535010540395 z^10 - 10142299865511450 z^9 + 63030812099294896 z^8 - 311333643161390640 z^7 + 1206647803780373360 z^6 - 3599979517947607200 z^5 + 8037811822645051776 z^4 - 12870931245150988800 z^3 + 13803759753640704000 z^2 - 8752948036761600000 z + 2432902008176640000);
is important in numerical analysis. Use Rouche's theorem to find a circle containing all of \(w(z)\)'s roots.
* J H Wilkinson (1984). "The perfidious polynomial." Studies in Numerical Analysis, ed by G H Golub, pp 1-28. (Studies in Mathematics, vol. 24). MAA.
- Wednesday, Apr 29
¤ Check what happens to the roots of \(w(x)\) when adding \(10^{-10}\) to the \(x^{19}\) term.
- Friday, May 1
◊ The Final Exam has been released.
- Tuesday, May 5
¤ Final Exam: 9:00 to 12:30
Last modified: Wednesday, 01-Feb-2023 08:32:12 EST
[an error occurred while processing this directive]