
Appendix A

A Compendium of Definitions and

Theorems of Elementary Real Analysis

The main definitions and results of elementary real analysis are collected here for
reference. All of the theorems forming the basis of first-year calculus appear along
with a number of interesting propositions that provide more depth and insight.

A.1 LIMITS

Definition 1 (Accumulation Point) Let D ⊆ R. A point a ∈ R is an accumulation
point of D iff every open interval containing a also contains a point x ∈ D with
x 6= a.

Definition 2 Let f : D → R and a be an accumulation point of D. Then

lim
x→a

f(x) = L
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2 DEFINITIONS AND THEOREMS OF ELEMENTARY REAL ANALYSIS

iff for every ε > 0 there is a δ > 0 such that whenever x ∈ D and 0 < |x− a| < δ,
then |f(x)− L| < ε.

Theorem 1 (Algebra of Limits) Suppose that f, g : D → R both have finite limits
at x = a ∈ D and c ∈ R. Then

• lim
x→a

c f(x) = c lim
x→a

f(x)

• lim
x→a

f(x)± g(x) = lim
x→a

f(x)± lim
x→a

g(x)

• lim
x→a

f(x) · g(x) = lim
x→a

f(x) · lim
x→a

g(x)

• if lim
x→a

g(x) 6= 0, then lim
x→a

f(x)
g(x)

=
lim
x→a

f(x)

lim
x→a

g(x)

Theorem 2 (“Sandwich Theorem”) Suppose that g(x) ≤ f(x) ≤ h(x) for all
x ∈ (a−h, a+h) for some h > 0. If lim

x→a
g(x) = L = lim

x→a
h(x), then lim

x→a
f(x) = L.

A.2 CONTINUITY

Definition 3 Let f : D → R and a be an accumulation point of D. Then f is
continuous at x = a iff for every ε > 0 there is a δ > 0 such that whenever x ∈ D
and |x− a| < δ, then |f(x)− f(a)| < ε.

Theorem 3 Every real polynomial is continuous at every x ∈ R.

Theorem 4 (Algebra of Continuity) Suppose that f, g : D → R both are continu-
ous at x = a ∈ D and that c ∈ R. Then

• cf is continuous at a

• f ± g is continuous at a

• f · g is continuous at a

• if g(a) 6= 0, then f/g is continuous at a

Theorem 5 (Continuity of Composition) Let f : A → R and g : B → R where
f(A) ⊆ B. Suppose that f is continuous at x = a ∈ A, that g is continuous at
x = f(a) ∈ B. Then g ◦ f is continuous at x = a.

Theorem 6 If a function f is continuous at a and φ is a function such that lim
t→t0

φ(t) =

a, then

lim
t→t0

f (φ(t)) = f

(
lim
t→t0

φ(t)
)
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Theorem 7 If a function f is continuous on a closed, finite interval [a, b], then f is
bounded on [a, b].

Theorem 8 (Intermediate Value Theorem) If f : [a, b]→ R is continuous and if k
is between f(a) and f(b), then there exists c ∈ (a, b) such that f(c) = k.

Corollary 9 Every odd degree real polynomial has a real root.

Corollary 10 Every real polynomial is a product of linear factors times irreducible
(over R) quadratic factors.

Corollary 11 (Fundamental Theorem of Algebra) Every nth degree real polyno-
mial has n complex roots counting multiplicity.

Theorem 12 (Extreme Value Theorem) If f : [a, b]→ R is continuous, then

1. there exists xm ∈ [a, b] such that f(xm) = min
x∈[a,b]

f(x)

2. there exists xM ∈ [a, b] such that f(xM ) = max
x∈[a,b]

f(x)

Definition 4 (Uniform Continuity) A function f : D → R is uniformly continuous
on D iff for every ε > 0 there is a δ > 0 such that whenever x1, x2 ∈ D and
|x1 − x2| < δ, then |f(x1)− f(x2)| < ε.

Theorem 13 If f is continuous on [a, b], then f is uniformly continuous on [a, b].

A.3 THE DERIVATIVE

Definition 5 Let f : D → R and a ∈ D be an accumulation point. Then

f ′(a) = lim
x→a

f(x)− f(a)
x− a

= lim
h→0

f(a+ h)− f(a)
h

Theorem 14 If f is differentiable at x = a, then f is continuous at x = a.

Theorem 15 (Algebra of Derivatives) If f, g : D → R are differentiable at x = a
and c ∈ R, then at x = a,

• (cf)′ = c(f ′)

• (f ± g)′ = f ′ ± g′

• (f · g)′ = f ′ · g + f · g′

• if g(a) 6= 0, then
(
f

g

)′
=
f ′ · g + f · g′

g2
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Theorem 16 (The Chain Rule) Let f : A→ B and g : B → R. Suppose that f is
differentiable at x = a ∈ A and that g is differentiable at x = b = f(a) ∈ B. Then
g ◦ f is differentiable at x = a and

(g ◦ f)′(a) = g′ (f(a)) · f ′(a)

Corollary 17 Let u be a differentiable function of x and r ∈ R. Then, when defined,

(ur)′ = r ur−1 · u′

(eu)′ = eu · u′ ln(u)′ =
1

u
· u′

sin(u)′ = cos(u) · u′ cos(u)′ = − sin(u) · u′

tan(u)′ = sec2(u) · u′ cot(u)′ = − csc2(u) · u′

sec(u)′ = sec(u) tan(u) · u′ csc(u)′ = − csc(u) cot(u) · u′

sin−1(u)′ =
1√

1− u2
· u′ cos−1(u)′ =

−1√
1− u2

· u′

tan−1(u)′ =
1

1 + u2
· u′ cot−1(u)′ =

−1

1 + u2
· u′

sec−1(u)′ =
1

|u|
√

u2 − 1
· u′ csc−1(u)′ =

−1

|u|
√

u2 − 1
· u′

Theorem 18 (Inverse Function Theorem) Let f : [a, b]→ R be differentiable with
f ′(x) 6= 0 for any x ∈ [a, b]. Then

• f is injective (1–1)

• f−1 is continuous on f([a, b])

• f−1 is differentiable on f([a, b])

• (f−1)′(y) =
1

f ′(x)
where y = f(x)

Theorem 19 Suppose that f : [a, b] → R has an extremum at c ∈ (a, b). If f is
differentiable at c ∈ (a, b), then f ′(c) = 0.

Theorem 20 (Rolle’s Theorem) If f : D → R is continuous on [a, b] ⊆ D and
differentiable on (a, b) with f(a) = f(b), then there exists a value c ∈ (a, b) such
that f ′(c) = 0.

Theorem 21 (Mean Value Theorem) If f : D → R is continuous on [a, b] and
differentiable on (a, b), then there exists a value c ∈ (a, b) such that

f(b)− f(a)
b− a

= f ′(c).
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Corollary 22 If f : D → R is continuous on [a, b] and differentiable on (a, b), then
there exists a value θ ∈ (0, 1) such that

f(a+ h) = f(a) + h · f ′(a+ θh).

Corollary 23 (Racetrack Principle) If f : D → R is continuous on [a, b], differen-
tiable on (a, b), and m ≤ f ′(x) ≤M, then

f(a) +m · (b− a) ≤ f(b) ≤ f(a) +M · (b− a).

Corollary 24 If f : D → R is continuous on [a, b], differentiable on (a, b), and
f ′(x) = 0 on D, then f is a constant function.

Corollary 25 If f, g : D → R are continuous on [a, b], differentiable on (a, b), and
f ′(x) = g′(x) on D, then f(x) = g(x) + k on D where k is a constant.

Corollary 26 If f : D → R is differentiable on [a, b], then f ′ has the Intermediate
Value Property.

Theorem 27 (Cauchy’s Mean Value Theorem) If f, g : D → R are continuous on
[a, b] and differentiable on (a, b), then there exists a value c ∈ (a, b) such that

f ′(c) [g(b)− g(a)] = g′(c) [f(b)− f(a)]

or, when denominators are non-zero,

f(b)− f(a)
g(b)− g(a)

=
f ′(c)
g′(c)

Definition 6 (Uniform Differentiability) Let f : [a, b] → R. Then f is uniformly
differentiable on [a, b] iff f is differentiable on [a, b] and, for every ε > 0, there exists
a δ > 0 such that whenever x1, x2 ∈ [a, b] with |x1 − x2| < δ, it must follow that∣∣∣∣f(x1)− f(x2)

x1 − x2
− f ′(x1)

∣∣∣∣ < ε

Corollary 28 If f : D → R is uniformly differentiable on [a, b], then f ′ is continuous
on [a, b].

Definition 7 (Lipschitz Condition) Let f : D → R. If there are positive constants
M and α such that for any x1, x2 ∈ D

|f(x1)− f(x2)| ≤M · |x1 − x2|α

then f is Lipschitz-α with constant M, written f ∈ LipM α.

Theorem 29 If f ∈ LipM α on D, then

1. f is continuous,
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2. if α > 1, f is constant,

Corollary 30 If f : [a, b]→ R is differentiable, then f ∈ LipM 1.

Definition 8 (Measure Zero) A set E has measure zero if and only if for any ε > 0
the set E can be covered by a countable collection of open intervals having total
length less than ε; i.e., E ⊆

⋃
i(ai, bi) where

∑
i(bi − ai) < ε.

Definition 9 (Almost Everywhere) A property P holds almost everywhere if the set
{x : P (x) is not true.} has measure zero.

Theorem 31 (Rademacher’s Theorem) If f ∈ LipM 1, then f is differentiable
almost everywhere.

Theorem 32 (Lebesgue Differentiation Theorem) If f :R→ R is continuous and
nondecreasing, then f is differentiable almost everywhere.

Definition 10 (Higher Order Derivatives) The nth derivative of f(x), if it exists, is

given by f (n)(x) =
d

dx
f (n−1)(x) for n > 1 where f (0) = f .

Theorem 33 Let f : D → R be m times continuously differentiable. Then f has a
root of multiplicity m at x = r iff f (m)(r) 6= 0, but

f(r) = f ′(r) = · · · = f (m−1)(r) = 0

Theorem 34 (First Derivative Test for Extrema) Let f be continuous on [a, b] and
differentiable on (a, b). If f ′(c) = 0 for c ∈ (a, b) and f ′ changes sign from

• negative to positive around c, then c is a relative minimum of f ;

• positive to negative around c, then c is a relative maximum of f.

• If f ′ does not change sign around c, then c is a stationary “terrace point” of f.

Theorem 35 (Second Derivative Test for Extrema) Let f be continuous on [a, b]
and twice differentiable on (a, b). If f ′(c) = 0 for c ∈ (a, b) and

• f ′′(c) is positive, then c is a relative minimum of f ;

• f ′′(c) is negative, then c is a relative maximum of f ;

• f ′′(c) = 0, then the test fails.

Theorem 36 (Taylor’s Theorem or Extended Law of the Mean) Let n ∈ N and
suppose that f has n + 1 derivatives on (a − h, a + h) for some h > 0. Then for
x ∈ (a− h, a+ h)

f(x) = f(a) +
n∑
k=1

f (k)(a)
k!

(x− a)k +Rn(x)
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where

Rn(x) =
f (n+1)(c)
(n+ 1)!

(x− a)n+1

for some c between x and a.

Theorem 37 (Taylor’s Theorem with Lagrange’s Form of the Remainder) Let
n ∈ N and suppose that f has n + 1 continuous derivatives on (a − h, a + h) for
some h > 0. Then for x ∈ (a− h, a+ h)

f(x) = f(a) +
n∑
k=1

f (k)(a)
k!

(x− a)k + Ln(x)

where

Ln(x) =
1
n!

∫ x

a

f (n+1)(t) · (x− t)n dt.

Theorem 38 (Bernstein) Let I be an interval and f : I → R have derivatives of
all orders. If f and all its derivatives are nonnegative, then the Taylor series of f
converges on I.

Theorem 39 (L’Hôpital’s Rule) Suppose that f and g are differentiable on an open
interval I containing a, and that

lim
x→a

f(x) = 0 = lim
x→a

g(x)

while g′(x) 6= 0 on I. Then, if the limit exists,

lim
x→a

f ′(x)
g′(x)

= lim
x→a

f(x)
g(x)

Corollary 40 Let n ∈ N. Then

lim
x→∞

xn

ex
= 0 and lim

x→∞

ln(x)
n
√
x

= 0

Corollary 41 If f is twice differentiable on an open interval I and x ∈ I, then

f ′′(x) = lim
h→0

f(x+ h)− 2f(x) + f(x− h)
h2

A.4 RIEMANN INTEGRATION

Definition 11 (Partition) A partition P of a closed interval [a, b] is an ordered set of
values {xi | i = 0..n} such that a = x0 < x1 < · · · < xn = b. The norm or mesh of
the partition is

‖P‖ = max{∆xi | i = 1..n}
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where ∆xi = xi − xi−1.

Definition 12 (Cauchy Sum) Let f : [a, b]→ R be a continuous function and P be
a partition of [a, b]. Then the Cauchy sum (or “left endpoint sum”) of f (w.r.t. P ) is

C(P, f) =
n∑
k=1

f(xk−1)∆xk

Definition 13 (Riemann Sum) Let f : [a, b] → R be a bounded function, P be a
partition of [a, b], and ck ∈ [xk−1, xk] for each k. Then the Riemann sum of f (w.r.t. P
and {ck}) is

R(P, f) =
n∑
k=1

f(ck)∆xk

Definition 14 (Darboux Sums) Let f : [a, b] → R, P be a partition of [a, b], and
set

Mk(f) = sup
[xk−1,xk]

f(x)

mk(f) = inf
[xk−1,xk]

f(x).

Then the upper and lower Darboux sums of f (w.r.t. P ) are

U(P, f) =
n∑
k=1

Mk∆xk

L(P, f) =
n∑
k=1

mk∆xk,

respectively.

Lemma 42 Let f : [a, b]→ R be a bounded function, say, below by m and above
by M, and let P be a partition of [a, b]. Then

m(b− a) ≤ L(P, f) ≤ R(P, f) ≤ U(P, f) ≤M(b− a)

for all choices of {ck}.

Lemma 43 Suppose f : [a, b]→ R is a bounded function andP andQ are partitions
of [a, b]. If P ⊆ Q, (i.e., Q is a finer partition), then

1. L(P, f) ≤ L(Q, f) and U(Q, f) ≤ U(P, f).

2. L(P, f) ≤ U(Q, f).

Definition 15 Set ∫ b

a

f(x) dx = inf
P
U(P, f)
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and ∫ b

a

f(x) dx = sup
P
L(P, f)

Lemma 44 Let f : [a, b]→ R be a bounded function and P be a partition of [a, b].
Then

L(P, f) ≤
∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx ≤ U(P, f)

Definition 16 A bounded function f : [a, b]→ R is Riemann integrable on [a, b] if
and only if ∫ b

a

f(x) dx =
∫ b

a

f(x) dx =
∫ b

a

f(x) dx = A ∈ R

Set R[a, b] = {f | f is Riemann integrable on [a, b]}.

Theorem 45 The bounded function f : [a, b]→ R is Riemann integrable on [a, b] if
and only if for any ε > 0 there is a partition P such that U(P, f)− L(P, f) < ε.

Theorem 46 If f is monotone on [a, b], then f ∈ R[a, b].

Theorem 47 If f is continuous on [a, b], then f ∈ R[a, b].

Theorem 48 If f, g ∈ R[a, b] and c ∈ R, then

1. f + g ∈ R[a, b] and
∫ b

a

(f + g)(x) dx =
∫ b

a

f(x) dx+
∫ b

a

g(x) dx.

2. cf ∈ R[a, b] and
∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx.

Theorem 49 If f, g ∈ R[a, b] and f(x) ≤ g(x) on [a, b], then
∫ b

a

f(x) dx ≤∫ b

a

g(x) dx.

Theorem 50 If f ∈ R[a, b], then |f | ∈ R[a, b] and∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx

Theorem 51 Let f : [a, b] → R is bounded and c ∈ (a, b). Then f ∈ R[a, b] if

and only if f ∈ R[a, c] and f ∈ R[c, b], and further,
∫ b

a

f(x) dx =
∫ c

a

f(x) dx +∫ b

c

f(x) dx.
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Theorem 52 If f ∈ R[a, b] and g is continuous on f([a, b]), then g ◦ f ∈ R[a, b].

Corollary 53 Let f, g ∈ R[a, b] and n ∈ N. Then

1. fn ∈ R[a, b]

2. f · g ∈ R[a, b].

Lemma 54 Let f ∈ R[a, b] and c, d ∈ [a, b]. Then

1.
∫ c

c

f(x) dx = 0,

2.
∫ d

c

f(x) dx = −
∫ c

d

f(x) dx.

Theorem 55 (Bonnet’s Theorem or First Mean Value Theorem for Integrals) Let
f be continuous on [a, b] and 0 ≤ g ∈ R[a, b]. Then there exists a value c ∈ (a, b)
such that ∫ b

a

f(x) g(x) dx = f(c)
∫ b

a

g(x) dx

Theorem 56 (Second Mean Value Theorem for Integrals) If f is a monotone func-
tion on [a, b], then there exists a value c ∈ (a, b) such that∫ b

a

f(x) dx = f(a)(c− a) + f(b)(b− c)

Theorem 57 (The Fundamental Theorem of Calculus)

• Define F (x) =
∫ x

a

f(t) dt. Then F is continuous and, if f is continuous at x0,

then F ′(x0) = f(x0)

• If F ′ = f on [a, b], then
∫ b

a

f(x) dx = F (b)− F (a)

Theorem 58 (Midpoint Rule for Numerical Integration) Suppose f : [a, b] → R
is integrable and that |f ′′(x)| ≤M2 on [a, b]. For n given, set xk = a+ k(b− a)/n
with k = 0..n and set ȳk = f ((xk + xk+1)/2) for k = 0..n− 1. Then∫ b

a

f(x) dx ≈ b− a
n

(ȳ0 + ȳ1 + · · ·+ ȳn−1)

with the absolute value of the error bounded by 1
24

(b−a)3
n2 M2.

Theorem 59 (Trapezoid Rule) Suppose f : [a, b] → R is integrable and that
|f ′′(x)| ≤ M2 on [a, b]. For n given, set xk = a + k(b − a)/n and set yk = f(xk)
with k = 0..n. Then∫ b

a

f(x) dx ≈ b− a
2n

(y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn)



RIEMANN-STIELTJES INTEGRATION 11

with the absolute value of the error bounded by 1
12

(b−a)3
n2 M2.

Theorem 60 (Simpson’s Rule) Suppose f : [a, b] → R is integrable and that∣∣f (4)(x)
∣∣ ≤M4 on [a, b]. For n even, set xk = a+ k(b− a)/n and set yk = f(xk)

with k = 0..n. Then∫ b

a

f(x) dx ≈ b− a
3n

(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 4yn−1 + yn)

with the absolute value of the error bounded by 1
180

(b−a)5
n4 M4.

Theorem 61 (Cauchy-Bunyakovsky-Schwarz Inequality) If f, g ∈ R[a, b], then[∫ b

a

f(x) g(x) dx

]2

≤

[∫ b

a

f2(x) dx

]
·

[∫ b

a

g2(x) dx

]

A.5 RIEMANN-STIELTJES INTEGRATION

Definition 17 Letα be a monotonically increasing function on [a, b].For any partition
P define ∆αi = α(xi)− α(xi−1).

Definition 18 (Upper & Lower Riemann-Stieltjes Integrals) Let f be a function
that is bounded and α be monotonically increasing on [a, b]. For each partition P,
define the upper and lower Riemann-Stieltjes sums by

U(P, f, α) =
n∑
k=1

Mk∆αk

L(P, f, α) =
n∑
k=1

mk∆αk

Now, define the upper and lower Riemann-Stieltjes integrals as∫ b

a

f(x) dα(x) = inf
P
U(P, f, α)∫ b

a

f(x) dα(x) = inf
P
L(P, f, α)

Definition 19 If
∫
fdα =

∫
fdα, then f is Riemann-Stieltjes integrable and we write

f ∈ R(α).

Theorem 62 A function f is Riemann-Stieltjes integrable on [a, b] if and only if for
every ε > 0 there is a partition P of [a, b] such that

U(P, f, α)− L(P, f, α) < ε.
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Theorem 63 If f is continuous on [a, b], then f ∈ R(α) on [a, b].

Theorem 64 If f is monotonic on [a, b] and α is continuous, then f ∈ R(α) on [a, b].

Theorem 65 If f is bounded & has finitely many discontinuities on [a, b] and α is
continuous at each discontinuity of f, then f ∈ R(α).

Theorem 66 If f is bounded on [a, b] and f ∈ R(α), then there existsm andM ∈ R
such that

m(α(b)− α(a)) ≤
∫ b

a

f(x) dα(x) ≤M(α(b)− α(a)).

Theorem 67 Let f and g ∈ R(α) on [a, b] and c ∈ R. Then

•
∫ b
a
cf(x) dα(x) = c

∫ b
a
f(x) dα(x)

•
∫ b
a
f(x) d cα(x) = c

∫ b
a
f(x) dα(x)

•
∫ b
a

(f + g)(x) dα(x) =
∫ b
a
f(x) dα(x) +

∫ b
a
g(x) dα(x)

•
∫ b
a
f(x) d(α1(x) + α2(x)) =

∫ b
a
f(x) dα1(x) +

∫ b
a
f(x) dα2(x)

• f · g ∈ R(α)

Theorem 68 Let f and g ∈ R(α) on [a, b]. If f(x) ≤ g(x), then
∫ b

a

f(x) dα(x) ≤∫ b

a

g(x) dα(x)

Theorem 69 If f ∈ R(α), then

∣∣∣∣∣
∫ b

a

f(x) dα(x)

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dα(x)

Definition 20 Define the Heaviside function to be U(x) =

{
0 x ≤ 0
1 x > 0

Theorem 70 If f is bounded on [a, b] and continuous at x0 ∈ (a, b), then∫ b

a

f(x) dU(x− x0) = f(x0)

Theorem 71 Let cn ≥ 0 with
∑
n cn converging and {xn} be a sequence of distinct

points in (a, b). Define

α(x) =
∞∑
k=1

ckU(x− xk)
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Let f be continuous on [a, b]. Then∫ b

a

f(x) dα(x) =
∞∑
k=1

ckf(xk)

Theorem 72 If f is bounded and α′ ∈ R(α), then f ∈ R(α) iff fα′ ∈ R and∫ b

a

f(x) dα(x) =
∫ b

a

f(x)α′(x) dx

Theorem 73 (Hölder’s Inequality) Let f and g be in R(α) and let p, q > 0 be such
that 1

p + 1
q = 1. Then

∣∣∣∣∣
∫ b

a

f(x)g(x) dα(x)

∣∣∣∣∣ ≤
[∫ b

a

|f(x)|pdα(x)

]1/p [∫ b

a

|g(x)|qdα(x)

]1/q

If p = 2, this is called the Cauchy-Bunyakovski-Schwarz Inequality.

Theorem 74 (Minkowski’s Inequality) Let p > 1 and let fp and gp be in R(α).
Then[∫ b

a

[f(x) + g(x)]p dα(x)

]1/p

≤

[∫ b

a

|f(x)|pdα(x)

]1/p

+

[∫ b

a

|g(x)|pdα(x)

]1/p

A.6 SEQUENCES AND SERIES OF CONSTANTS

Definition 21 A real-valued sequence is a function a : N→ R. Sequence terms are
denoted by a(n) = an.

Definition 22 Let f : N→ N be a strictly increasing function. The composition a◦ f
forms a subsequence and is denoted by a(f(k)) = ank

.

Definition 23 A sequence converges, written lim
n→∞

an = L, iff for every ε > 0, there

is an N ∈ N such that, if n > N, then |an − L| < ε.

Theorem 75 (Corollary to the Heine-Borel Theorem) A bounded sequence has a
convergent subsequence.

Definition 24 (Cauchy Sequence) A sequence an is Cauchy iff, for every ε > 0,
there is an N ∈ N such that if n,m > N, then |an − am| < ε.

Theorem 76 A sequence is Cauchy iff the sequence converges.

Definition 25 A sequence {an} is
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• monotonically increasing iff an ≤ an+1 for all n,

• monotonically decreasing iff an ≥ an+1 for all n.

Theorem 77 If {an} is monotonic, then {an} converges iff it is bounded.

Definition 26 Let {an} be a sequence. Define

• lim sup
n→∞

an = lim
n→∞

(
sup
k≥n

ak

)
which is also equal to inf

n≥0

(
sup
k≥n

ak

)

• lim inf
n→∞

an = lim
n→∞

(
inf
k≥n

ak

)
which is also equal to sup

n≥0

(
inf
k≥n

ak

)
Theorem 78 Let {an} be a real-valued sequence. Then lim

n→∞
an = a iff lim inf

n→∞
an =

a = lim sup
n→∞

an.

Definition 27 Let {an} be a sequence. The associated series is sn =
n∑
k=1

an. The

terms sn are called the partial sums of the series. The series converges to s, written

as s =
∞∑
k=1

an iff the sequence of partial sums {sn} converges to s.

Theorem 79 If sn =
∞∑
k=1

an converges, then lim
n→∞

an = 0.

Definition 28 (Cauchy Series) A series sn =
∞∑
k=1

an is called Cauchy iff for every

ε > 0, there is an N ∈ N such that, if n ≥ m > N, then

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε.

Theorem 80 Every Cauchy series in R converges.

Theorem 81 (The Comparison Test) Let
∑
n an be a series.

• If |an| ≤ cn for all n ≥ N0 and
∑
cn converges, then

∑
an converges.

• If an ≥ dn > 0 for all n ≥ N0 and
∑
dn diverges, then

∑
an diverges.

Theorem 82 (The Limit Comparison Test) Let
∑
n an and

∑
n bn be positive se-

ries. If 0 < limn→∞ an/bn < ∞, then the series either both converge or both
diverge.

Theorem 83 (Cauchy Condensation Test) Let {an} be a nonnegative decreasing
sequence. Then the series

∑
n an converges if and only if

∑
n(2na2n) converges.
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Theorem 84 (The Ratio Test, I) The series
∑
n an converges if lim sup

n

∣∣∣∣an+1

an

∣∣∣∣ < 1

and diverges if
∣∣∣∣an+1

an

∣∣∣∣ > 1 for n ≥ N0.

Corollary 85 (The Ratio Test, II) For the series
∑
n an, define ρ = lim

n

∣∣∣∣an+1

an

∣∣∣∣ .
Then,

• ρ < 1, the series converges,

• ρ > 1, the series diverges,

• ρ = 1, the test fails.

Theorem 86 (The Root Test) For the series
∑
n an, define ρ = lim sup

n

n
√
|an|.

Then,

• ρ < 1, the series converges,

• ρ > 1, the series diverges,

• ρ = 1, the test fails.

Theorem 87 (The Integral Test) Let f : [1,∞) → R be a continuous, positive,
decreasing function such that f(n) = an. Then the improper integral

∫∞
1
f(x) dx

converges if and only if the series
∑
n an converges.

Theorem 88 (Alternating Series Test) If an ≥ an+1 > 0 for all n ∈ N and
limn→∞ an = 0, then

∑
n(−1)nan converges.

A.7 SEQUENCES AND SERIES OF FUNCTIONS

Definition 29 (Pointwise Convergence) A sequence of functions fn :E → R con-
verges pointwise on E iff for each x ∈ E, the sequence {fn(x)} converges.

Definition 30 (Convergence in Mean) A sequence of integrable functionsfn : [a, b]→

R converges in mean to f iff lim
n→∞

[∫ b

a

[fn(x)− f(x)]2dx

]1/2

= 0.

Definition 31 (Uniform Convergence) A sequence of functions fn : E → R con-
verges uniformly to f on E iff for every ε > 0 there is an N ∈ N such that whenever
n > N, then |fn(x)− f(x)| < ε for all x ∈ E.

Definition 32 (Cauchy Criterion for Uniform Convergence) A sequence of func-
tions fn :E → R converges uniformly on E iff for every ε > 0 there is an N ∈ N
such that whenever n,m > N, then |fn(x)− fm(x)| < ε for all x ∈ E.
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Theorem 89 Let fn :E → R be a sequence of functions converging uniformly to f
on E. If each fn is continuous on E, then f is continuous on E.

Theorem 90 Let fn :E → R be a sequence of functions converging uniformly to f
on E. Then lim

n→∞
lim
x→a

fn(x) = lim
x→a

lim
n→∞

fn(x) for x, a ∈ E.

Theorem 91 Let fn : [a, b] → R be a sequence of integrable functions converging
uniformly on [a, b]. Then

lim
n→∞

∫ b

a

fn(x) dx =
∫ b

a

lim
n→∞

fn(x) dx.

Theorem 92 (Dini’s Theorem) Let fn : [a, b] → R be a monotonic sequence of
functions converging pointwise to f on [a, b] where −∞ < a < b < ∞. Then fn
converges uniformly to f on [a, b].

Theorem 93 Let fn : [a, b]→ R be a sequence of continuously differentiable functions
converging pointwise to f on [a, b]. Then if f ′n converges uniformly on [a, b], then fn
converges uniformly to f and f ′n converges uniformly to the continuous function f ′ on
[a, b].

Theorem 94 (The Weierstrass M -test) Let
∑
n fn(x) be a series of functions all

defined on D ⊆ R. If there is a convergent series of constants
∑
nMn such that

for each n we have |fn(x)| ≤ Mn for all x ∈ D, then
∑
n fn(x) converges both

uniformly and absolutely on D.

Theorem 95 (Abel’s Uniform Convergence Test) Let fn : D → R be a bounded,
monotonically decreasing sequence of functions and

∑
n an be a convergent series of

constants. Then
∑
n anfn(x) converges uniformly on D.


