MAT 1110	NAME:
PROJECT 1.	ASU EMAIL:

Connections Project

The table below summarizes the geometric connections between f, f^{\prime}, and $f^{\prime \prime}$.

$f(x)$	\mid	$f^{\prime}(x)$	$\mid c$	$f^{\prime \prime}(x)$
increasing	\rightarrow	nonnegative		
max/min	\rightarrow	root		
decreasing	\rightarrow	nonpositive		
minimum	\rightarrow	root	\rightarrow	nonnegative
maximum	\rightarrow	root	\rightarrow	nonpositive
concave up	\rightarrow	increasing	\rightarrow	positive
inflection pt	\rightarrow	max/min	\rightarrow	root
concave down	\rightarrow	decreasing	\rightarrow	negative

Table 1: Y^{e} Charte

Problems

1. Give an example illustrating each row in the table. Show your function, its derivative(s), and appropriately labeled graph(s). (You may use one function's graphs to illustrate a group of rows of the chart.)
2. Where else, other than at a root of the derivative, can extrema occur? (Give sample graph(s).)
3. Suppose that $x=1$ is a root of the derivative; i.e., $g^{\prime}(1)=0$. Does the original function $g(x)$ have to have an extreme value (maximum or minimum) at $x=1$?
4. Suppose that $x=2$ is a root of the second derivative; i.e., $h^{\prime \prime}(2)=0$. Does the original function $h(x)$ have to have an inflection point at $x=2$?

DEFINITION: A zero or root of f at $x=a$ has multiplicity n or order n if $f(a)=0, f^{\prime}(a)=0, f^{\prime \prime}(a)=0$, up to $f^{(n-1)}(a)=0$, but $f^{(n)}(a) \neq 0$.
5. Show that $p(x)=x^{4}-7 x^{3}+18 x^{2}-20 x+8$ has a root of order 3 at $x=2$ and of order 1 at $x=1$.
6. Replace root in the second row of the chart with
(a) odd root. Does this change the implication?
(b) even root. Does this change the implication?
$O d d$ and even denote a root of f of odd or even order n.
7. List your project team members:

