Mat 1110	NAME:
Project 1.	ASU EMAIL:

Connections Project

The table below summarizes the geometric connections between f, f', and f''.

f(x)		f'(x)		f''(x)
increasing	\rightarrow	nonnegative		
max/min	\rightarrow	root		
decreasing	\rightarrow	nonpositive		
minimum	\rightarrow	root	\rightarrow	nonnegative
maximum	\rightarrow	root	\rightarrow	nonpositive
concave up	\rightarrow	increasing	\rightarrow	positive
inflection pt	\rightarrow	max/min	\rightarrow	root
concave down	\rightarrow	decreasing	\rightarrow	negative

Table 1: Ye Charte

Problems

- 1. Give an example illustrating each row in the table. Show your function, its derivative(s), and appropriately labeled graph(s). (You may use one function's graphs to illustrate a group of rows of the chart.)
- 2. Where else, other than at a root of the derivative, can extrema occur? (Give sample graph(s).)
- 3. Suppose that x = 1 is a root of the derivative; i.e., g'(1) = 0. Does the original function g(x) have to have an *extreme value* (maximum or minimum) at x = 1?
- 4. Suppose that x = 2 is a root of the second derivative; i.e., h''(2) = 0. Does the original function h(x) have to have an *inflection point* at x = 2?

DEFINITION: A zero or root of f at x = a has multiplicity n or order n if f(a) = 0, f'(a) = 0, f''(a) = 0, up to $f^{(n-1)}(a) = 0$, but $f^{(n)}(a) \neq 0$.

- 5. Show that $p(x) = x^4 7x^3 + 18x^2 20x + 8$ has a root of order 3 at x = 2 and of order 1 at x = 1.
- 6. Replace root in the second row of the chart with
 - (a) *odd root*. Does this change the implication?
 - (b) even root. Does this change the implication?

Odd and *even* denote a root of f of odd or even order n.

7. List your project team members: