
Project 4

Euler’s Method and Sky Diving

Background

The derivative f ′ of a function f at x = x0 gives the slope of the tangent line at the
point (x0, f(x0)). One can use the tangent line to estimate values of f for values of x
near x0 and see whether the function is increasing or decreasing.

f(x)

f(x0 + ∆x)

f(x0) + f ′(x0) · ∆x

f(x0)

x0 x1

dy

dx

We observe that near x = x0 the value of dy is a “good” approximation to the true value
of ∆y; i.e., the tangent line is “close” to the graph of f when x is close to x0. Leibniz’s
notation for the derivative at a, dy

dx = f ′(a), was chosen to suggest that dy = dx ·f ′(a).
So our new value y + ∆y is approximated by y + dy = f(a) + dx · f ′(a). Certainly,
the actual value of y + ∆y could be larger or smaller than our estimate—that depends
on the function. The smaller the change in x, however, the smaller the error should be.

We have already used the local linearity of differentiable functions to develop New-
ton’s method to approximate the zeroes of a function. A second, and historically im-
portant application, interpolation is used to extend the tables. If one knows f(a) and
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can determine f ′(a), then values of f(a + ∆x) can be estimated by:

f(a + ∆x) ≈ f(a) + ∆x · f ′(a)

This technique is particularly valuable when values for f are difficult to calculate.
Local linearity is also used to solve initial value problems:

Suppose we have an easy way to compute f ′(x). Suppose further we have
one point, the initial value, that lies on the graph of y = f(x). From this
information we “reconstruct” f .

In this project, we adopt a frequently used strategy. We weaken our notion of what
it is to reconstruct f . Instead of insisting on a formula for f , we produce a table
of values [x, f(x)]. Typically, such data arrays contain anywhere from 20 to 20, 000
points (xi, yi).

Before starting to calculate, we need to decide on the size of the table. This decision
is based on the needs of the end user of the data, the equipment and time available, and
the mathematical nature of the problem. The size of the table determines the range
of x-values and the total number of entries. Often, the x-values are equally spaced to
simplify the formulas. Then the domain and the number of entries together determine
∆x, the distance between successive x-values in the table.

We construct the table of values as follows:

Our initial point is (x0, f(x0)). We calculate f ′(x0). The tangent line
to f is given by

y = f ′(x0) · (x− x0) + f(x0).

Taking x1 = x0 + ∆x and substituting into the equation of the tangent
line, we get the value

y1 = f ′(x0) · (x1 − x0) + f(x0)

which simplifies to

y1 = f ′(x0) ·∆x + f(x0).

Knowing the equality y1 = f(x1) is at best approximate, we accept the
value and enter it in the table. Now start over from the point (x1, f(x1)).
We next calculate f ′(x1). The corresponding tangent line to f is given by

y = f ′(x1) · (x− x1) + f(x1).

Taking x2 = x1 + ∆x and substituting into the equation of the tangent
line, we get the value

y2 = f ′(x1) · (x2 − x1) + f(x1)

which simplifies to

y2 = f ′(x1) ·∆x + f(x1).

Again we accept the equality y2 = f(x2) for use in the table. To produce
the next point, we calculate f ′(x2) and move along the new tangent line
to reach (x3, y3).
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The process is continued until we have filled the table. Successively generating new
values of f in a table by following the tangent lines is known as Euler’s method. The
diagram below illustrates the construction of the first three points in the table generated
by Euler’s method.

(x 0, y 0 )

(x 1, y 1 )
(x 2, y 2 )

(x 3, y 3 )

m 0 = Dƒ  (x 0)

m 1 = Dƒ  (x 1)

m 2 = Dƒ  (x 2)

To give you some feel for the accuracy possible with Euler’s method, the figure
below shows the graph of the function f along with the graph of the table produced
from the initial value problem:

f ′(x) = 1 + 2 cos(2x)
(x0, y0) = (0, 0)

with the table size determined as:

Range of table: x values from x = 0 to x = 3
Number of table entries: 51 (50 new values + the initial point)

Step size: ∆x = 3−0
50 = 0.06

Actual Function

Euler’s Method
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Note in this example, on the interval where the function itself is concave down, Eu-
ler’s method over-approximates the change in f . On the interval in which the function
is concave up, Euler’s method under-approximates the change in f . Over the entire
interval [0, 3], the two errors appear to cancel for this initial value problem.
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Let’s consider an initial value problem in detail:

Suppose f ′(x, y) = x2 − y2 and f(0.5) = 1.
Construct a table for f(x) over the interval from x = 0.5 to x = 1.0.

To begin our construction, we take ∆x = 0.1; this will produce five new values
and complete a table of 6 entries.

Question 1 How does the choice of the value for ∆x affect the size of the table gener-
ated?

Set up the initial values and functions in your calculator by entering as follows.
Define the x values as list L1:

seq(0.5+0.1K, K, 0, 5) → L1

{.5 .6 .7 .8 .9 . . .

Setup list L2 to hold the initial value y0 and the 5 calculated y values.

6 → dim(L2)

6

and put y0 = 1.0 into L2(1) and ∆x = 0.1 into D.

1.0 → L2(1)

1.

0.1 → D

.1

Now we will create the slope function m = f ′(x, y) using Y1.

Y1= L1(X)ˆ2 - L2(X)ˆ2
Y2=
Y3=

The syntax will be in the form Y1(1) to calculate the slope at the first point
(x, y) = (L1(1), L2(2)), then Y1(2) to calculate the slope at the second point, etc.
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Compute the second y value and put it into L2(2).

L2(1) + Y1(1)*D → L2(2)

.925

Calculate the rest of the table entries.

L2(2) + Y1(2)*D → L2(3)

. 8754375

L2(3) + Y1(3)*D → L2(4)

. 8477984184

L2(4) + Y1(4)*D → L2(5)

. 8399222026

Tedious, wasn’t it? To put our values in an array, we will use the calculator’s
Table. First return to the Y= editor and put L1 and L2 into Y2 and Y3 as shown below.

Y1= L1(X)ˆ2 - L2(X)ˆ2
Y2= L1(X)
Y3= L2(X)
Y4=

In the TBLSET screen, set TblStart to 1, ∆Tbl to 1, Indpnt to Auto and
Depend to Ask. Now go to TABLE. Move the cursor to the Y2 column; press ENTER
to show the value. Move the cursor to the Y3 column; press ENTER to show the value.
Moving the cursor and pressing ENTER shows each value. Do not go out of the range
of the data or an error will result.

X Y2 Y3

1 .5 1
2 .6 .925
3 .7 .87544
4 .8 .84780
5 .9 .83992
6 1 .85038
7
Y2=

The data can also be plotted easily. Go to STAT PLOT, choose Plot 1 and press
ENTER. Turn the plot On and set Xlist and Ylist to L1 and L1, respectively. Before
attempting to plot, turn off Y1, Y2, and Y3 in the Y= editor. Now go to GRAPH setting
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the window appropriately.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.5 0.6 0.7 0.8 0.9 1

Clearly, in extending the table to x = 2.5 we could spend an inordinate amount of
time doing arithmetic and entering commands. We can automate Euler’s method using
a program. Press PRGM and select NEW. Type the name EULER. Carefully enter the
lines below:

PROGRAM:EULER
:N→DIM(L1)
:N→DIM(L2)
:B→L2(1)
:seq(A+J*D,J,0,N-1)→L1

:FOR(K,1,N-1)
:L2(K)+Y1(K)*D→L2(K+1)
:END

To use the program, first define the derivative function and set the initial values:

Y1= L1(X)ˆ2-L2(X)ˆ2 Define y′ = f(x, y) = x2 − y2

A = 0.5 Set x0

B = 1.0 Set y0

D = 0.1 Set ∆x
N = 21 Set N , the number of points (x, y)

Now run the program by pressing PRGM and choosing EXEC, EULER. When the Home
screen appears, you’ll see PrgmEULER. Press ENTER. After a moment, the program
will finish.

To see the table of the results, turn on Y1 and Y2 in the Y= editor and then go to the
TABLE.

To see the plot, turn off Y1 and Y2 in the Y= editor and go to GRAPH choosing
ZoomStat for a good viewing window.

Your data should be similar to the results below.
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.5 1.0

.6 .925

.7 .8754375

.8 .8477984184

.9 .8399222026
1.0 .8503752720
1.1 .8780614617
1.2 .9219622687
1.3 .9809608262
1.4 1.053732412
1.5 1.138697212
1.6 1.234034078
1.7 1.337750067
1.8 1.447792543
1.9 1.562182218
2.0 1.679140890
2.1 1.797189477
2.2 1.915200475
2.3 2.032401189
2.4 2.148335730
2.5 2.262801089
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We have avoided several possible problems. In using this procedure you must be
careful that all of the initial values are entered as floating point numbers (they must con-
tain a decimal point). Care must be taken in entering parentheses and brackets where
required. Minor typing mistakes can result in warnings about “recursive definitions”
— heed them unless you have a perverse desire to crash the machine and lose your
work.

Project Report

The velocity of a sky diver is modeled using Newton’s Second Law by the system:

v′(t) = 9.8− k · [v(t)]1.1

v(0) = v0

The units are acceleration, m/sec2

Initial velocity is in m/sec.

The first term in the derivative is the acceleration due to the gravity of the earth.
The second term is due to air resistance — an important quantity to sky divers.

For your models, take the coefficient of resistance k = 2.1 and the initial velocities
v0 = 0.0 m/sec and v0 = 4.8 m/sec. Use Euler’s method to determine the velocity of
the sky diver after 10 seconds. Produce at least three tables of different sizes. The first
table should have 21 values.

Question 2 Euler’s method when used with a small number of points (which gives
a large ∆x) produces a jagged graph. What size table is needed before the graph
“smooths”?
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Extension
1. Recall that velocity v is the derivative of displacement s. Use your reconstruction

of v from one or more of your tables above to reconstruct s(t), the distance fallen
by the sky diver.

2. Consider the effect of a parachute opening after 60 seconds.

Report Requirements
A minimal project report will include:

• English responses to Questions 1 and 2.

• The annotated Maple statements and calculations used to generate the velocity
table.

• A plot of the generated points (xi, yi).

• A discussion of the graphs in relation to your physical intuition of sky diving.


