
Project 4

Euler’s Method and Sky Diving

Background

The derivativef ′ of a functionf at x = x0 gives the slope of the tangent line at the
point (x0, f(x0)). One can use the tangent line to estimate values off for values ofx
nearx0 and see whether the function is increasing or decreasing.

f(x)

f(x0 + ∆x)

f(x0) + f ′(x0) · ∆x

f(x0)

x0 x1

dy

dx

We observe that nearx = x0 the value ofdy is a “good” approximation to the true value
of ∆y; i.e., the tangent line is “close” to the graph off whenx is close tox0. Leibniz’s
notation for the derivative ata, dy

dx = f ′(a), was chosen to suggest thatdy = dx ·f ′(a).
So our new valuey + ∆y is approximated byy + dy = f(a) + dx · f ′(a). Certainly,
the actual value ofy + ∆y could be larger or smaller than our estimate—that depends
on the function. The smaller the change inx, however, the smaller the error should be.

We have already used the local linearity of differentiable functions to develop New-
ton’s method to approximate the zeroes of a function. A second, and historically im-
portant application, interpolation is used to extend the tables. If one knowsf(a) and
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can determinef ′(a), then values off(a + ∆x) can be estimated by:

f(a + ∆x) ≈ f(a) + ∆x · f ′(a)

This technique is particularly valuable when values forf are difficult to calculate.
Local linearity is also used to solve initial value problems:

Suppose we have an easy way to computef ′(x). Suppose further we have
one point, the initial value, that lies on the graph ofy = f(x). From this
information we “reconstruct”f .

In this project, we adopt a frequently used strategy. We weaken our notion of what
it is to reconstructf . Instead of insisting on a formula forf , we produce a table
of values[x, f(x)]. Typically, such data arrays contain anywhere from 20 to20, 000
points(xi, yi).

Before starting to calculate, we need to decide on the size of the table. This decision
is based on the needs of the end user of the data, the equipment and time available, and
the mathematical nature of the problem. The size of the table determines the range
of x-values and the total number of entries. Often, thex-values are equally spaced to
simplify the formulas. Then the domain and the number of entries together determine
∆x, the distance between successivex-values in the table.

We construct the table of values as follows:

Our initial point is(x0, f(x0)). We calculatef ′(x0). The tangent line
to f is given by

y = f ′(x0) · (x− x0) + f(x0).

Taking x1 = x0 + ∆x and substituting into the equation of the tangent
line, we get the value

y1 = f ′(x0) · (x1 − x0) + f(x0)

which simplifies to

y1 = f ′(x0) ·∆x + f(x0).

Knowing the equalityy1 = f(x1) is at best approximate, we accept the
value and enter it in the table. Now start over from the point(x1, f(x1)).
We next calculatef ′(x1). The corresponding tangent line tof is given by

y = f ′(x1) · (x− x1) + f(x1).

Taking x2 = x1 + ∆x and substituting into the equation of the tangent
line, we get the value

y2 = f ′(x1) · (x2 − x1) + f(x1)

which simplifies to

y2 = f ′(x1) ·∆x + f(x1).

Again we accept the equalityy2 = f(x2) for use in the table. To produce
the next point, we calculatef ′(x2) and move along the new tangent line
to reach(x3, y3).
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The process is continued until we have filled the table. Successively generating new
values off in a table by following the tangent lines is known asEuler’s method. The
diagram below illustrates the construction of the first three points in the table generated
by Euler’s method.

(x 0, y 0 )

(x 1, y 1 )
(x 2, y 2 )

(x 3, y 3 )

m 0 = Dƒ  (x 0)

m 1 = Dƒ  (x 1)

m 2 = Dƒ  (x 2)

To give you some feel for the accuracy possible with Euler’s method, the figure
below shows the graph of the functionf along with the graph of the table produced
from the initial value problem:

f ′(x) = 1 + 2 cos(2x)
(x0, y0) = (0, 0)

with the table size determined as:

Range of table: x values fromx = 0 to x = 3
Number of table entries: 51 (50new values+ the initial point)

Step size: ∆x = 3−0
50 = 0.06

Actual Function

Euler’s Method
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Note in this example, on the interval where the function itself is concave down, Eu-
ler’s method over-approximates the change inf . On the interval in which the function
is concave up, Euler’s method under-approximates the change inf . Over the entire
interval[0, 3], the two errors appear to cancel for this initial value problem.
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Let’s consider an initial value problem in detail:

Supposef ′(x) = x2 − y2 andf(0.5) = 1.
Construct a table forf(x) over the interval fromx = 0.5 to x = 1.0.

To begin our construction, we take∆x = 0.1; this will produce five new values
and complete a table of 6 entries.

Question 1 How does the choice of the value for∆x affect the size of the table gener-
ated?

Set up the initial values and functions in Maple by entering :
> df := (x,y) -> x 2 - y 2;

df := (x, y) → x2 − y2

> x[0] := 0.5;
> y[0] := 1.0;

x0 := .5

y0 := 1.0

> dx := 0.1;
dx := .1

Calculate the table entries by typing:
> x[1] := x[0] + dx;
> y[1] := y[0] + df(x[0],y[0]) * dx;

x1 := .6

y1 := .925

> x[2] := x[1] + dx;
> y[2] := y[1] + df(x[1],y[1]) * dx;

x2 := .7

f( .7 ) := .8754375

> x[3] := x[2] + dx;
> y[3] := y[2] + df(x[2],y[2]) * dx;

x3 := .8

y3 := .8477984184

> x[4] := x[3] + dx;
> y[4] := y[3] + df(x[3],y[3]) * dx;

x4 := .9

y4 := .8399222026
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> x[5] := x[4] + dx;
> y[5] := y[4] + df(x[4],y[4]) * dx;

x5 := 1.0

y5 := .8503752720

Tedious, wasn’t it? To put our values in a table, we will use Maple’s sequence
command.

> Table := [seq([x[i], y[i]], i=0..5)];

Table := [[ .5, 1.0 ], [ .6, .925 ], [ .7, .8754375 ], [ .8, .8477984184 ],
[ .9, .8399222026 ], [ 1.0, .8503752720 ]]

Table can now be plotted1

> plot(Table);

0.84
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0.88
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0.92

0.94

0.96

0.98

1

0.5 0.6 0.7 0.8 0.9 1

Or printed nicely in a matrix.
> Matrix(6, 2, [Table]);

.5 1.0

.6 .925

.7 .8754375

.8 .8477984184

.9 .8399222026
1.0 .8503752720


1Merging two images makes a very informative plot. Try:

plots[display]( {plot(Table), plot(Table, style=point,
symbol=diamond) }); .
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Clearly, in extending the table tox = 2.5 we could spend inordinate time doing
arithmetic. We can automate Euler’s method using the following Maple constructs.

Define the derivative function and set the initial values:
> df := (x,y) -> x 2 - y 2;

df := (x, y) → x2 − y2

> x[0] := 0.5;
> y[0] := 1.0;

x0 := .5

y0 := 1.0

> dx := 0.1;
dx := .1

> for i from 0 to 19 do
x[i+1] := x[i] + dx;
y[i+1] := y[i] + df(x[i],y[i]) * dx;
end do:

> NewTable := [seq([x[i], y[i]], i=0..20)]:
Matrix(21, 2, NewTable); 2

.5 1.0

.6 .925

.7 .8754375

.8 .8477984184

.9 .8399222026
1.0 .8503752720
1.1 .8780614617
1.2 .9219622687
1.3 .9809608262
1.4 1.053732412
1.5 1.138697212
1.6 1.234034078
1.7 1.337750067
1.8 1.447792543
1.9 1.562182218
2.0 1.679140890
2.1 1.797189477
2.2 1.915200475
2.3 2.032401189
2.4 2.148335730
2.5 2.262801089


> plot(NewTable);

2Enterinterface(rtablesize=50) to tell Maple to display large matrices.
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We have avoided several possible problems. In using this procedure you must be
careful that all of the initial values are entered as floating point numbers (they must con-
tain a decimal point). Care must be taken in entering parentheses and brackets where
required. Minor typing mistakes can result in warnings about “recursive definitions”
— heed them unless you have a perverse desire to crash the machine and lose your
work.

Project Report

The velocity of a sky diver is modeled using Newton’s Second Law by the system:
v′(t) = 9.8− k · [v(t)]1.1

v(0) = v0

The units are acceleration, m/sec2

Initial velocity is in m/sec.
The first term in the derivative is the acceleration due to the gravity of the earth.

The second term is due to air resistance — an important quantity to sky divers.
For your models, take the coefficient of resistancek = 2.1 and the initial velocities

v0 = 0.0 m/sec andv0 = 4.8 m/sec. Use Euler’s method to determine the velocity of
the sky diver after 10 seconds. Produce at least three tables of different sizes. The first
table should have 21 values.

Question 2 Euler’s method when used with a small number of points (which gives
a large ∆x) produces a jagged graph. What size table is needed before the graph
“smooths”?

Extension

1. Recall that velocityv is the derivative of displacements. Use your reconstruction
of v from one or more of your tables above to reconstructs(t), the distance fallen
by the sky diver.
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2. Thefor . . . from . . . by . . . to . . . do . . . od structure used in Euler’s method
can be entered as a Maple procedure with the variablen replacing the 19. This
has the effect of changingdx and creating larger or smaller tables. Remember,
for each new table,dx must be recalculated.

3. Consider the effect of a parachute opening after 60 seconds.

Report Requirements

A minimal project report will include:

• English responses to Questions 1 and 2.

• The annotated Maple statements and calculations used to generate the velocity
table.

• A plot of the generated points(xi, yi).

• A discussion of the graphs in relation to your physical intuition of sky diving.


