Advanced Encryption Standard (AES) for the US

Bill Bauldry
Appalachian State University

Abstract

Rijndael, a symmetric key cypher, designed by Joan Daemen and Vincent Rijmen, both of Belgium, has been selected by NIST as the proposed Advanced Encryption Standard (AES) replacing DES. Rijndael is based on arithmetic in the Galois field of 2^{8} elements, $G F\left(2^{8}\right)$. We will present an overview of the algorithm with notes on computability in GF(2^{8}).

AES/Rijndael

Designed by:
Joan Daemen, Proton World International
Vincent Rijmen, Katholique Universiteit Lueven

- Block cypher
- Symmetric key
- Arithmetic based in the Galois field $G F\left(2^{8}\right)$
- Fast and scalable
- Resistant to all known cryptanalysis attacks

Background: Finite Fields, I

- Theorem. For every prime p and positive integer n, there exists a finite field having p^{n} elements.
- Theorem. Any two fields with p^{n} elements are isomorphic.

$$
<\boldsymbol{Z}_{p}, \oplus, \odot>\text { is the finite field of order } p
$$

Background: Finite Fields, II

- Theorem. Any finite field is isomorphic to a simple field extension of \mathbf{Z}_{p} for some prime p.
- Theorem. Let F be a field, let $m(x)$ be irreducible in $F[x]$. Then $F[x] / m(x)$ is a field.

$G F\left(2^{8}\right)$

- The Galois field with 2^{8} elements is the finite field

$$
G F\left(2^{8}\right)=\boldsymbol{Z}_{2}[x] / m(x)
$$

where m is irreducible in $Z_{2}[x]$ and has degree 8.

- Rijndael chooses $m(x)=1+x+x^{3}+x^{4}+x^{8}$

Computing in $G F\left(2^{8}\right)$

- Addition is xor (subtraction is addition)
- Multiplication by x is shift left and, if overflow, subtract $1+x+x^{3}+x^{4}+x^{8}$ i.e.,

$$
\left[b_{7}, b_{6}, \ldots, b_{0}\right] \times x=\left\{\begin{array}{cc}
{\left[b_{6}, \ldots, b_{0}, 0\right]} & \text { if } b_{7}=0 \\
{\left[b_{6}, \ldots, b_{0}, 0\right] \otimes 00011011} & \text { if } b_{7}=1
\end{array}\right.
$$

Block Size, Key Size, Number of Rounds

- Text Blocks are:

128 bits in a 4×4 byte array (originally 128,192 , or 256 bits in $4 \times N b$ byte arrays)

- Key lengths are:

128,192 , or 256 bits in $4 \times N k$ byte array

- Number of Rounds:

10,12 , or 14 matching key length

Block \&e Key Structure

- Block and Key — both 128 bit / 16 bytes:
$\left\lceil b_{0} \quad b_{4} \quad b_{8} \quad b_{12}\right\rceil$

$$
\left[b_{0}, b_{1}, b_{2}, \ldots, b_{15}\right] \Rightarrow\left|\begin{array}{llll}
b_{1} & b_{5} & b_{9} & b_{13} \\
b_{2} & b_{6} & b_{10} & b_{14}
\end{array}\right|
$$

- Data matrix is State;
- Key matrix is RoundKey

Rijndael Round

1. SubBytes (S-Box substitution)
2. ShiftRows (rotations)
3. MixColumn (linear comb. in $G F\left(2^{8}\right)$) (skipped for last round)
4. AddRoundKey (State xor RoundKey)

Rijndael Cypher

AES(data_block, key)
\{in State, RoundKeys
State \leftarrow State xor RoundKey ${ }_{0}$
for Round = 1 to Nr
SubBytes(State)
ShiftRow (State)
If not(last Round) then MixColumn(State)
State \leftarrow State xor RoundKey $y_{\text {Round }}$
out State \}

S-Box Arithmetic

- Elements in $G:=G F\left(2^{8}, 1+\alpha+\alpha^{3}+\alpha^{4}+\alpha^{8}\right)$ $n_{\text {hex }} \Rightarrow n_{\text {bin }} \Rightarrow$ (polynomial with n^{\prime} s bits for coeffs) Arithmetic in $Z_{2}\left(+/^{*}\right)$, then \bmod by $1+\alpha+\alpha^{3}+\alpha^{4}+\alpha^{8}$ polynomial $\Rightarrow n_{\text {bin }} \Rightarrow n_{\text {hex }}$
- $\operatorname{ByteSub}(x)=\mathbf{A} \times x^{-1}+63_{\text {hex }}$
- Precompute and use look-up table

ShiftRow

- Left rotate row n of State by n positions for $n=0 . .3$
$\left\lceil\begin{array}{llll}b_{0} & b_{4} & b_{8} & b_{12} \\ & \left\lceil b_{0}\right. & b_{4} & b_{8}\end{array} b_{12}\right\rceil$
$\left|\begin{array}{llll}b_{1} & b_{5} & b_{9} & b_{13}\end{array}\right| \Rightarrow\left|\begin{array}{llll}b_{5} & b_{9} & b_{13} & b_{1}\end{array}\right|$
$\left|\begin{array}{llll}b_{2} & b_{6} & b_{10} & b_{14} \\ b_{3} & b_{7} & b_{11} & b_{15}\end{array}\right| \xrightarrow{\Rightarrow}\left|\begin{array}{llll}b_{10} & b_{14} & b_{2} & b_{6} \\ b_{15} & b_{3} & b_{7} & b_{11}\end{array}\right|$

MixColumn Arithmetic

- Elements in

$$
\begin{aligned}
& \left\lceil b_{i}\right\rceil \quad G[x] / x^{4}+1 \\
& \left|b_{i+1}\right| \Rightarrow b(x)=b_{i}+b_{i+1} x+b_{i+2} x^{2}+b_{i+3} x^{3} \in G[x] \\
& \left\lfloor b_{i+3}\right\rfloor \quad \Rightarrow p(x)=b(x) \times q(x) \\
& \text { where } q(x)=2+x+x^{2}+3 x^{3} \quad\left\lceil B_{i}\right\rceil \\
& p(x) \bmod \left(1+x^{4}\right)=B_{0}+B_{1} x+B_{2} x^{2}+B_{3} x^{3} \Rightarrow\left[\left.\begin{array}{c}
\left|B_{i+1}\right| \\
B_{i+2} \\
B_{i+3}
\end{array} \right\rvert\,\right.
\end{aligned}
$$

MixColumn Arithmetic

- MixColumn is equivalent to

$$
\left.\begin{array}{l}
{[02} \\
02
\end{array} 0301001\right] \quad\left[\left.\begin{array}{llll}
b_{0} & b_{4} & b_{8} & b_{12} \\
\mid 01 & 02 & 03 & 01
\end{array}\left|\times \begin{array}{|lll}
b_{1} & b_{5} & b_{9}
\end{array} b_{13}\right| ~ \right\rvert\, ~\left[\left.\begin{array}{llll}
b_{2} & b_{6} & b_{10} & b_{14}
\end{array} \right\rvert\,\right.\right.
$$

with calculations in $G F\left(2^{8}\right)$.

AddRoundKey

- Addition in \mathbf{Z}_{2} is equivalent to xor of bits.

State \leftarrow State xor RoundKey

Key Expansion

RoundKey $n-1$
Round Key n

Inverse Cypher

- Reverse Steps
- Use Expanded Keys in Reverse Order
- ByteSub and ShiftRow Commute
- MixColumn Matrix is Invertible

References

- NIST
csrc.nist.gov/encryption/aes/rijndael/
- Vincent Rijmen's Rijndael Home Page
www.esat.kuleuven.ac.be/~rijmen/rijndael/
- Maple Cryptology Package with Rijndael
www.mathsci.appstate.edu/~wmcb/
CryptologyInClass /

