MAT 5930. Analysis for Teachers.

Wm C Bauldry

BauldryWC@appstate.edu

Summer, 2006

Course Outline

1. Introduction
2. Calculus Review Week 1

- Calculus Courses
- Standard Courses
- AP Calculus Courses
- Calculus Problems
§1 Precalculus Background
§2 Limits \& Continuity
§3 Derivatives
§4 Integration
§5 Infinite Series

3. Analysis Problems

Weeks 2-3
§1 Basic Problems
§2 Supplementary Problems
§3 Enrichment Problems
4. History \& Biography

Week 4
5. Readings
6. Student Presentations \&

Reports
Week 4

Introduction and Calculus Review

1. Course Introduction (Course Info page, Syllabus, Projects)
2. Calculus Review
2.1 A Standard Freshman Calculus Course (§I-III)

- Refer to texts by Thomas, Stewart, and Ostebee \& Zorn
2.2 An AP Calculus Course
2.2.1 Functions, Graphs, and Limits

Analysis of graphs, limits of functions, asymptotic behavior, continuity
2.2.2 Derivatives

Concept, interpretations, at a point, as a function, second derivative, applications, computation, numerical approximation
2.2.3 Integrals

Concept, interpretations, properties, Fundamental Theorem, applications, techniques, applications, numerical approximation

Calculus Review

2. (Calculus Review)
2.3 Calculus Problems
§1 Precalculus material: summation, induction, slope, trigonometry; Pg. 7, 1-4.
§2 Limits and Continuity: Squeeze Theorem, discontinuity, removable discontinuity, different interpretations of limit expressions; Pg. 9, 5-7.
§3 Derivatives: trigonometric derivatives, power rule, indirect methods, Newton's method, Mean Value Theorem, "Racetrack Principle"; Pg. 10, 8-12.
§4 Integration: Fundamental Theorem, Riemann sums, parts, multiple integrals; Pg. 12, 13-20.
§5 Infinite Series: geometric, integrals and series, partial fractions, convergence tests (ratio, root, comparison, integral), Taylor \& Maclaurin; Pg. 14, 21-25.

Summations and Induction

Example $\left(\sum_{k=1}^{n} k=\frac{n(n+1)}{2}\right.$ by Picture)

Example ($\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ by Induction)
Let $P(n)$ be the proposition that $\sum_{k=1}^{n} k$ is equal to $\frac{n(n+1)}{2}$.
Basis: Then $P(1)$, which is $\sum_{k=1}^{1} k=\frac{1(1+1)}{2}$, is clearly true.
Induction: Show that if $P(n)$ is true, then $P(n+1)$ is true. Assume $P(n)$ is true and add $(n+1)$ to both sides; i.e.,

$$
(n+1)+\sum_{k=1}^{n} k=(n+1)+\frac{n(n+1)}{2} .
$$

Combine terms to see $\sum_{k=1}^{n+1} k=\frac{(2 n+2)+n(n+1)}{2}$. Simplify:

$$
\sum_{k=1}^{n+1} k=\frac{(n+1)(n+2)}{2}
$$

which shows that $P(n+1)$ is true.
By the Principle of Mathematical Induction, the result holds.

Summations and Induction

Exercise

Validate the formula by picture and prove it by induction:

$$
\begin{aligned}
& \text { 1. } \sum_{k=1}^{n} 2 k=n^{2}+n \\
& \text { 2. } \sum_{k=1}^{n} 2 k-1=\text { ? } \\
& \text { 3. } \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

(Hint: A Stack of Triangles)

Compare:

Definition (Intuitive Limit)

The limit of $f(x)$ as x approaches a is L, written as

$$
\lim _{x \rightarrow a} f(x)=L
$$

if and only if we can make $f(x)$ arbitrarily close to L whenever x is sufficiently close to, but not equal to, a.

Definition (Formal Limit-calculus level)

Let f be defined on an open interval \mathcal{I} containing a, but not necessarily defined at a. Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

if and only if for every $\epsilon>0$ there is a corresponding $\delta>0$ such that whenever $x \in \mathcal{I}(x \neq a)$ is within δ of a, then $f(x)$ must be within ϵ of L.

Limit Proofs, I

Example ($\epsilon-\delta$ Proof)

Prove: $\lim _{x \rightarrow 2} 2 x+3=7$

Proof.

Let $\epsilon>0$. Then we need to find a $\delta>0$ so that

$$
\begin{array}{r}
|f(x)-L|=|(2 x+3)-(7)|<\epsilon \\
|2 x-4|<\epsilon \\
2|x-2|<\epsilon
\end{array}
$$

Choosing $\delta>0$ to be less than $\epsilon / 2$ yields that if $0<|x-2|<\delta$, then it must follow that $|f(x)-L|=|(2 x+3)-(7)|<\epsilon$.

Limit Proofs, II

Example ($\epsilon-\delta$ Proof)

Prove: $\lim _{x \rightarrow 3} 4 x^{2}-1=35$

Proof.

Let $\epsilon>0$. Then we need to find a $\delta>0$ so that

$$
\begin{array}{r}
|f(x)-L|=\left|\left(4 x^{2}-1\right)-(35)\right|<\epsilon \\
\left|4 x^{2}-36\right|=|2 x+6| \cdot|2 x-6|<\epsilon \\
(4|x+3|) \cdot|x-3|<\epsilon
\end{array}
$$

Assume $\delta<1$. Then $-1<x-3<1$ implies that $5<x+3<7$, so that $20<4(x+3)<35$. Choosing $\delta>0$ to be less than the minimum of $\epsilon / 35$ and 1 yields that if $0<|x-3|<\delta$, then it must follow that $|f(x)-L|=\left|\left(4 x^{2}-1\right)-(35)\right|<\epsilon$.

Limit Proofs, III

"For every $\epsilon>0$ there is a $\delta>0$ such that P is true" negated becomes
"There is an $\epsilon>0$ for which no $\delta>0$ gives that P is true"

Example ($\epsilon-\delta$ "Non-Proof")

Demonstrate that $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist.

Proof.

Suppose the limit is L. Let $\epsilon=1$ and let δ be any positive number. Choose any $x_{p} \in(0, \delta)$. Then $\left|x_{p}\right| / x_{p}=1$, so that $|f(x)-L|=|1-L|$. Choose any $x_{n} \in(-\delta, 0)$. Then $\left|x_{n}\right| / x_{n}=-1$, so that $|f(x)-L|=|-1-L|$. We have that

$$
-\epsilon<1-L<\epsilon \Rightarrow-1<1-L<1 \Rightarrow 0<L<2
$$

and

$$
-\epsilon<-1-L<\epsilon \Rightarrow-1<-1-L<1 \Rightarrow-2<L<0
$$

which is a contradiction. Therefore there is no limit L.

Limit Proofs, IV

Exercise

Find the value and prove it correct for:

1. $\lim _{x \rightarrow 3} 4 x-1=$
2. $\lim _{x \rightarrow 2}-3 x+5=$
3. $\lim _{x \rightarrow 1} 4-x^{2}=$
4. $\lim _{x \rightarrow 0} 2 x^{3}+1=$
5. $\lim _{x \rightarrow-1} 3 x^{3}+x+1=$
6. Why won't this approach work for $\lim _{x \rightarrow 1} \ln (2 x-1)$?
7. Prove that $\lim _{x \rightarrow 0} \frac{1}{x}$ doesn't exist.

Compare:

Definition (Intuitive Continuity)

The function f is continuous at $x=a$ if and only if we can make $f(x)$ arbitrarily close to $f(a)$ whenever x is sufficiently close to a.

Definition (Formal Continuity-calculus level)

Let f be defined on an open interval \mathcal{I} containing a. Then f is continuous at $x=a$ if and only if for every $\epsilon>0$ there is a corresponding $\delta>0$ such that whenever $x \in \mathcal{I}$ is within δ of a, then $f(x)$ must be within ϵ of L.

1. How do these definitions compare to the limit definitions?

Squeeze Theorem

Theorem (Squeeze Theorem or Sandwich Theorem)

Suppose that $m(x) \leq f(x) \leq M(x)$ on a deleted neighborhood' of a and that

$$
\lim _{x \rightarrow a} m(x)=L=\lim _{x \rightarrow a} M(x) .
$$

Then

$$
\lim _{x \rightarrow a} f(x)=L .
$$

1. Apply the theorem to $f(x)=x^{2} \sin (1 / x)$ to determine a value for $f(0)$ that makes f continuous.
2. State and apply an analogue of the theorem to use to determine $\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}$.
${ }^{1}$ A deleted neighborhood of a is $(a-\delta, a) \cup(a+\delta)$ for some $\delta>0$.

Types of Discontinuity

Definition (Four Principal Types of Discontinuity)

Removable: The limit $\lim _{x \rightarrow a} f(x)$ exists, but isn't equal to $f(a)$.
Jump: Both $\lim _{x \rightarrow a+} f(x)$ and $\lim _{x \rightarrow a-} f(x)$ exist, but have different values.

Infinite: At least one of $\lim _{x \rightarrow a+} f(x)$ or $\lim _{x \rightarrow a-} f(x)$ is infinite.
Oscillating: At least one of $\lim _{x \rightarrow a+} f(x)$ or $\lim _{x \rightarrow a-} f(x)$ doesn't exist, but is bounded.

1. Find examples of each type of discontinuity.

Continuous and Discontinuous a Lot!

Example (Dirichlet's Function)

A function that is continuous at each irrational point, discontinuous at each nonzero rational point in $[0,1]$.

Derivatives

Definition (The Derivative Function)

The derivative of $f(x)$ is given by

$$
\frac{d}{d x} f(x)=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

if the limit exists.

Definition (Rules)

Results:

1. $\left(u^{r}\right)^{\prime}=r u^{r-1} \cdot u^{\prime}$
2. $\left(e^{u}\right)^{\prime}=e^{u} \cdot u^{\prime}, \ln (u)^{\prime}=\frac{u^{\prime}}{u}$
3. $\sin (u)^{\prime}=+\cos (u) \cdot u^{\prime}$, etc.
4. $\sin ^{-1}(u)^{\prime}=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$, etc.

Reductions:

1. $(k \cdot u)^{\prime}=k \cdot\left(u^{\prime}\right)$
2. $(u \pm v)^{\prime}=\left(u^{\prime}\right) \pm\left(v^{\prime}\right)$
3. $(u \cdot v)^{\prime}=\left(u^{\prime}\right) \cdot v+u \cdot\left(v^{\prime}\right)$
4. $\left(\frac{u}{v}\right)^{\prime}=\frac{\left(u^{\prime}\right) \cdot v-u \cdot\left(v^{\prime}\right)}{v^{2}}$
5. $(u(v))^{\prime}=u^{\prime}(v) \cdot v^{\prime}$

Newton's Method

Example (A Functional Version of Newton's Method)

Define the function Newton $(x)=x-\frac{f(x)}{f^{\prime}(x)}$.

Maple	TI
$\mathrm{f}:=\mathrm{x}->\ldots ;$	$\mathrm{y} 1:=\ldots$
$\mathrm{df}:=\mathrm{D}(\mathrm{f}) ;$	$\mathrm{y} 2:=\left(\mathrm{y} 1^{\prime}\right)$
$\mathrm{N}:=\mathrm{x} \rightarrow \mathrm{x}-\mathrm{f}(\mathrm{x}) / \mathrm{df}(\mathrm{x}) ;$	$\mathrm{y} 3:=\mathrm{x}-\mathrm{y} 1(\mathrm{x}) / \mathrm{y} 2(\mathrm{x})$

Give an initial value and iterate:

Maple	TI
$1.0 ;$	1.0
$\mathrm{~N}(\%) ;$	y 3 (ans)
$\mathrm{N}(\%) ;$	$\mathrm{y} 3(\mathrm{ans})$

Et cetera.

1. Find all positive roots of $f(x)=x^{7}-1.4995 x+0.994$

The Mean Value Theorem and ...

Theorem (The Mean Value Theorem)

Let f be differentiable on (a, b) and continuous at the endpoints. Set $m=\frac{f(b)-f(a)}{b-a}$. Then there is a $c \in(a, b)$ so that $f^{\prime}(c)=m$.

Theorem (The "Speed Limit Law")

Let f be differentiable on $[a, b]$ and $M \in \mathbb{R}$. If $f^{\prime}(x) \leq M$ for all $x \in[a, b]$, then $f(b)-f(a) \leq M \cdot(b-a)$.

Theorem (The "Racetrack Principle")

Suppose $f(a)=g(a)$ and $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x \geq a$. Then $f(x) \leq g(x)$ for all $x \geq a$.

Fundamental Theorem of Calculus

Theorem (Fundamental Theorem, Version 1)

Suppose that f is integrable on $[a, b]$ and set

$$
F(x)=\int_{a}^{x} f(t) d t
$$

for $x \in[a, b]$. Then F is continuous and at each point of continuity c of f we have that $F^{\prime}(c)=f(c)$.

Theorem (Fundamental Theorem, Version 2)

Let f be continuous on $[a, b]$ with $F^{\prime}(x)=f(x)$. Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Functions Defined by Integrals

Many important functions that have no elementary expressions are defined by integrals.

Definition (Several Special Functions)

- $\ln (x)=\int_{1}^{x} \frac{1}{t} d t$
- $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$
- $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t \quad$ Generalized factorial as $\Gamma(n)=(n-1)$!
- $\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t$
- $\mathcal{F}_{s}(x)=\int_{0}^{x} \sin \left(\pi / 2 \cdot t^{2}\right) d t$

A Function Defined by an Integral

Example

Define: $f(x)=\left\{\begin{array}{ll}1 & x<1.5 \\ -1 & \text { otherwise }\end{array}\right\}$ and $F(x)=\int_{0}^{x} f(t) d t$.

Query: Where is F not differentiable?

Which Witch is Which?

Example

The graph shows $f(x), f^{\prime}(x)$, and $\int f(x) d x$. Which is which?

Riemann Sums

Definition (Riemann Sum)

Let f be a bounded function on $[a, b]$. Let the partition \mathcal{P} be $\mathcal{P}=\left\{x_{0}=a<x_{1}<x_{2}<\cdots<x_{n}=b\right\}$ and $\mathcal{T}=\left\{t_{i}\right\}$ be a collection of points where $t_{i} \in\left[x_{i-1}, x_{i}\right]$ for each $i=1$..n. The Riemann sum is

$$
\mathcal{R}(f, \mathcal{P}, \mathcal{T})=\sum_{k=1}^{n} f\left(t_{k}\right) \cdot\left(x_{k}-x_{k-1}\right)
$$

Definition (Riemann-Stieltjes Sum)

Let f be bounded and g be increasing on $[a, b]$. Let the partition \mathcal{P} be $\mathcal{P}=\left\{x_{0}=a<x_{1}<x_{2}<\cdots<x_{n}=b\right\}$ and $\mathcal{T}=\left\{t_{i}\right\}$ be a collection of points where $t_{i} \in\left[x_{i-1}, x_{i}\right]$ for each $i=1$..n. The Riemann-Stieltjes sum is

$$
\mathcal{R S}(f, g, \mathcal{P}, \mathcal{T})=\sum_{k=1}^{n} f\left(t_{k}\right) \cdot\left[g\left(x_{k}\right)-g\left(x_{k-1}\right)\right]
$$

A Special Integral

The integral $\mathcal{I}=\int_{0}^{\infty} e^{-\left(x^{2}\right)} d x$ is important in analysis and probability, but has no elementary antiderivative - the Fundamental Theorem does not apply. Instead, consider

$$
\mathcal{I}^{2}=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

Change to polar coordinates with
$[x, y] \mapsto[r, \theta]=\left[\sqrt{x^{2}+y^{2}}, \arctan (y / x)\right] \quad$ and $\quad d x d y \mapsto r d r d \theta$.
The transformed integral is

$$
\mathcal{I}^{2}=\int_{0}^{\pi / 2} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta
$$

which is not hard to evaluate.

Convergence Tests

Theorem

Ratio Test: Let $\sum a_{n}$ be a series of positive terms and set $r=\lim a_{n+1} / a_{n}$. Then

1. if $0 \leq r<1$, the series converges.
2. if $1<r \leq \infty$, the series diverges.
3. if $r=1$, the test fails.

Root Test: Let $\sum a_{n}$ be a series of positive terms and set $\rho=\lim \sqrt[n]{a_{n}}$. Then

1. if $0 \leq \rho<1$, the series converges.
2. if $1<\rho \leq \infty$, the series diverges.
3. if $\rho=1$, the test fails.

Further Tests

Theorem

Limit Comparison: Let $\sum a_{n}$ and $\sum b_{n}$ be positive series. Set $r=\lim a_{n} / b_{n}$. Then

1. if $r=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
2. if $0<r<\infty$, the series either converge or diverge together.
3. if $r=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.
Integral Test: Let $a_{n}=f(n)$ be positive terms. Then $\sum a_{n}$ and $\int_{k}^{\infty} f(x) d x$ converge or diverge together.

For more convergence tests, visit Mathworld.

Taylor Polynomials and Series

Definition (Taylor Polynomial for f)

Let f have n continuous derivatives. The Taylor polynomial for f of degree n is
$T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}$
Set $M_{n+1}=\max \left|f^{(n+1)}(t)\right|$ on the interval $[a, b]$. Then the error in approximating f by T_{n} for $x \in[a, b]$ is bounded by

$$
\operatorname{Err}_{n} \leq \frac{M_{n+1}}{(n+1)!}(x-a)^{n+1}
$$

Definition (Taylor Series for f)

Let f have derivatives of all orders. The Taylor series for f is

$$
T(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

for $|x-a|<R$ where $R \geq 0$ is the radius of convergence.

Taylor Comparison

Example

The Taylor series for sine works well, in contrast to tan o sin's.

Complex Plots Show the Answer

Example

The radius of convergence of a Taylor series is the distance from its center to the nearest pole. Poles may lie in the plane, off the real axis.

Analysis Problems

3. Analysis Problems
3.1 Basic Problems

- Even \& Odd Functions Ex. 1-8, pg. 22.
- Cancellation \&

Telescoping Sums
Ex. 2-4, 8, pg. 25.

- Maclaurin Series Ex. 1-5, 7, pg. 28.
- Cavalieri Sums

Ex. 1-4, pg. 31.
3.2 Supplementary Problems

- Counterexamples Ex. 1-16, pg. 36.
- Unusual Functions

Ex. 1-3, 5, pg. 39.

- Interior, Exterior, Boundary, \& Limit Points
Ex. 1-12, pg. 40.
- Uniform Continuity The Chart, pg. 41.
- Euler and the Sum of Reciprocal Squares Ex. 1-3, pg. 49.
- Interlude: Euler and Polynomial Roots
- Sequences \& Series of Functions
Ex. 1-2, pg. 73; The
Chart, pg. 74;
Ex. 1-4, pg. 79.

Analysis Problems

3. (Analysis Problems)
3.3 Enrichment Problems

- The Rationals Are a Small Set

Ex. 1-2, pg. 100.

- A Brief Introduction to Lebesgue Measure Ex. 2-4, pg. 122.
- Special Functions - the Gamma Function Ex. 1-5, pg. 108.
- Fourier Series

Ex. 1-5, pg. 115.

Even \& Odd Functions

Theorem

Every function $f: \mathbb{R} \rightarrow \mathbb{R}$ is the sum of an even function and an odd function.

Proof.

Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, define the two components $f_{e}(x)$ and $f_{o}(x)$ as

$$
\begin{aligned}
& f_{e}(x)=\frac{1}{2}(f(x)+f(-x)) \\
& f_{o}(x)=\frac{1}{2}(f(x)-f(-x))
\end{aligned}
$$

Exercise: Fill in the details to make this a proof.

Even \& Odd Decomposition

Example

Even Function Integrals

Example

Integrate $\int_{-\pi}^{+\pi} \sin ^{2}(x) d x$.
The function $\sin ^{2}$ is even. Thus

$$
\int_{-\pi}^{+\pi} \sin ^{2}(x) d x=2 \int_{0}^{+\pi} \sin ^{2}(x) d x
$$

Apply a trigonometric identity to see that

$$
\begin{aligned}
\int \sin ^{2}(x) d x & =\int \frac{1}{2}(1-\cos (2 x)) d x \\
& =\frac{1}{2} \int d x-\frac{1}{2} \int \cos (2 x) d x=\frac{x}{2}-\frac{\sin (2 x)}{4}
\end{aligned}
$$

Thence $\int_{-\pi}^{+\pi} \sin ^{2}(x) d x=\pi$.

Cancellation \& Telescoping Sums

Example

$$
\begin{aligned}
& \text { What is } \sum_{n=1}^{\infty} \frac{1}{n(n+1)} ? \\
& \begin{aligned}
\sum_{n=1}^{N} \frac{1}{n(n+1)} & =\sum_{n=1}^{N} \frac{1}{n}-\frac{1}{n+1} \\
& =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{N}-\frac{1}{N+1}\right) \\
& =\frac{1}{1}+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\cdots+\frac{1}{N}\right)-\frac{1}{N+1} \\
& =1-\frac{1}{N+1}
\end{aligned}
\end{aligned}
$$

Whence

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\lim _{N \rightarrow \infty}\left(1-\frac{1}{N+1}\right)=1
$$

Bigger Telescoping Sums

Example

What is $\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$?
$\sum_{n=1}^{N} \frac{3}{n(n+3)}=\sum_{n=1}^{N} \frac{1}{n}-\frac{1}{n+3}$
$=\left(\frac{1}{1}-\frac{1}{4}\right)+\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{3}-\frac{1}{6}\right)+$
$\left(\frac{1}{4}-\frac{1}{7}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\left(\frac{1}{6}-\frac{1}{9}\right)+\ldots$
$=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}\right)-\left(\frac{1}{N+1}+\frac{1}{N+2}+\frac{1}{N+3}\right)$
Hence

$$
\sum_{n=1}^{\infty} \frac{3}{n(n+3)}=\lim _{N \rightarrow \infty}\left[\frac{1}{1}+\frac{1}{2}+\frac{1}{3}-\frac{1}{N+1}-\frac{1}{N+2}-\frac{1}{N+3}\right]=\frac{11}{6}
$$

Maclaurin Series

A Maclaurin series is a Taylor series centered at $a=0$. Alternate techniques can be useful for finding Maclaurin expansions without searching for a formula for the nth derivative.

Example

The series for $\sec (x)$ can be found from

$$
\begin{aligned}
\frac{1}{\cos (x)} & =\frac{1}{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!} \pm \cdots} \\
& =1+\frac{1}{2} x^{2}+\frac{5}{24} x^{4}+\frac{61}{720} x^{6}+\cdots
\end{aligned}
$$

To find the inverse of the cosine series, use

$$
\begin{aligned}
1 & =\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+O\left(x^{6}\right)\right) \times\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+O\left(x^{5}\right)\right) \\
1 & =a_{0}+a_{1} x+\left(a_{2}-\frac{a_{0}}{2}\right) x^{2}+\left(a_{3}-\frac{a_{1}}{2}\right) x^{3}+\left(a_{4}-\frac{a_{2}}{2}+\frac{a_{0}}{24}\right) x^{4}+O\left(x^{5}\right) \\
& \Rightarrow a_{0}=1 \Rightarrow a_{2}=\frac{1}{2} \Rightarrow a_{4}=\frac{5}{24} \Rightarrow \ldots ; a_{1}=0 \Rightarrow a_{3}=0 \Rightarrow a_{5}=0, \& \mathrm{c}
\end{aligned}
$$

Maclaurin Series, II

Example (Differentiation/Integration)

The Maclaurin series for $\ln (1+x)$ can be found as follows (subject to conditions):

$$
\begin{aligned}
\ln (1+x) & =\int \frac{1}{1+x} d x \\
\frac{1}{1+x} & =1-x+x^{2}-x^{3}+x^{4}-x^{5} \pm \cdots \\
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} \pm \ldots
\end{aligned}
$$

We need to investigate what conditions are needed to be able to integrate term by term; i.e., when is

$$
\int \sum_{k=0}^{\infty} a_{n}(x) d x=\sum_{k=0}^{\infty} \int a_{n}(x) d x
$$

permissible?

Cavalieri Sums

Faulhaber published the general formula for sums of powers in 1631 in Academiæ Algebræ.

Theorem

$$
\sum_{k=1}^{n} k^{p}=\frac{1}{p+1} \sum_{j=1}^{p+1}(-1)^{\delta_{j, p}}\binom{p+1}{j} B_{(p+1-j)} n^{j}
$$

where δ is the "Kronecker delta function"

$$
\delta_{x, y}= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

and B_{n} is nth the Bernoulli number.

Counterexamples

Studying counterexamples is important in developing a deeper understanding of concepts.

Example

- The signum function is $\operatorname{sgn}(x)=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{array}\right\}$. The signum function is not the derivative of any function. (Derivatives have the Intermediate Value Property.)
- Set $g(x)=|x|$ on $[-1 / 2,1 / 2]$ and let f be its periodic extension to \mathbb{R}. Define

$$
S(x)=\sum_{n=1}^{\infty} \frac{f\left(4^{n-1} x\right)}{4^{n-1}}
$$

Then S is continuous everywhere, but differentiable nowhere.

- from Gelbaum \& Olmstead's Counterexamples in Analysis

A "Nowhere Man" Function

Example

Unusual Functions

Example (Reciprocal Floors)

$f(x)=\left\lfloor\frac{1}{x}\right\rfloor$

$f(x)=\frac{1}{\lfloor x\rfloor}$

Unusual Functions, II

Example

Consider $f_{n}(x)=\operatorname{sgn}(x) \cdot x^{n}$ and it's derivatives (if there are any) at $x=0$. (Look at several cases: $n=2,3,4, \& c$.)

1. What is $\frac{d}{d x} f_{n}(x)$?
2. Is $\frac{d}{d x} f_{n}(x)$ continuous?
3. What is $\frac{d}{d x} f_{n}(0)$?
4. What is $\frac{d^{n}}{d x^{n}} f_{n}(x)$?
5. What is $\frac{d^{n}}{d x^{n}} f_{n}(0)$?
6. Is $\frac{d^{n}}{d x^{n}} f_{n}(x)$ continuous?

Interior, Exterior, Boundary, \& Limit Points

Definition

Neighborhood A (basic) neighborhood $N(x)$ of $x \in \mathbb{R}$ is an open interval containing x.
Interior The interior of a set is

$$
\operatorname{int}(S)=\{x \mid N(x) \subseteq S \text { for some n'hood } N(x)\}
$$

Exterior The exterior of a set is

$$
\operatorname{ext}(S)=\left\{x \mid N(x) \subseteq S^{c} \text { for some n'hood } N(x)\right\}
$$

Boundary The boundary of a set is

$$
\operatorname{bd}(S)=\mathbb{R}-(\operatorname{int}(S) \cup \operatorname{ext}(S)
$$

Limit Point The point x is a limit point of S iff every neighborhood $N(x)$ contains a point of S different from x; i.e., $S \cap(N(x)-\{x\}) \neq \emptyset$.

Interior/Exterior Diagram in \mathbb{R}^{2}

Example

Uniform Continuity

Definition

- A function f is uniformly continuous on a set S iff for any $\epsilon>0$, there is a $\delta>0$ such that for any $x_{1}, x_{2} \in S$ with $\left|x_{1}-x_{2}\right|<\delta$, we have $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon$.
- A function f is not uniformly continuous on a set S iff there is an $\epsilon>0$ for which any $\delta>0$ has points $x_{1}, x_{2} \in S$ with $\left|x_{1}-x_{2}\right|<\delta$, but $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \geq \epsilon$.

Theorem

- If f is continuous on a compact set S, then f is uniformly continuous on S.
- If f is uniformly continuous on (a, b), then f can be extended to be (uniformly) continuous on $[a, b]$.
- If f^{\prime} is bounded on (a, b), then f is uniformly continuous on (a, b).

Euler and the Sum of Reciprocal Squares

Jakob Bernoulli posed, in his 1689 Tractatus de seriebus infinitis, what came to be called the Basel Problem: Find the value of the sum

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

Bernoulli had shown it to be less than 2 using the inequality

$$
\frac{1}{k^{2}} \leq \frac{1}{\frac{1}{2} k(k+1)}=\frac{2}{k}-\frac{2}{k+1}
$$

Leonhard Euler, in 1735, became the first to prove that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Sine as a Product and as a Series

Example

Building the sin from products

$$
\frac{\sin (x)}{x}=\prod_{k=1}^{\infty}\left(1-\frac{x^{2}}{k^{2} \pi^{2}}\right)=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{2 k-2}}{(2 k-1)!}
$$

Euler's Second Proof

Euler was concerned about the validity of his earlier proof, so he found others.

Proof.

Lemma 1: $\frac{\left[\sin ^{-1}(x)\right]^{2}}{2}=\int_{0}^{x} \frac{\sin ^{-1}(t)}{\sqrt{1-t^{2}}} d t$.
Lemma 2: $\sin ^{-1}(t)=t+\frac{1}{2} \cdot \frac{t^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{t^{5}}{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{t^{7}}{7}+\cdots$.
Lemma 3: $\int_{0}^{1} \frac{t^{n+2}}{\sqrt{1-t^{2}}} d t=\frac{n+1}{n+2} \int_{0}^{1} \frac{t^{n}}{\sqrt{1-t^{2}}} d t$ for $n \geq 1$.

The Proof

Proof.

- Set $x=1$ in Lemma 1 .
- Replace the $\sin ^{-1}$ term using the series in Lemma 2.
- Integrate with Lemma 3.
- These steps give $\frac{\pi^{2}}{8}=1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\cdots$; i.e., the sum of the odd squares.
- Working with the identity

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1}{k^{2}} & =\left[1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\cdots\right]+\left[\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\cdots\right] \\
& =\frac{\pi^{2}}{8}+\frac{1}{4}\left[1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots\right] \\
& =\frac{\pi^{2}}{8}+\frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}}
\end{aligned}
$$

gives the result.

Interlude: Euler and Polynomial Roots

Theorem
Suppose the monic nth degree polynomial

$$
p(x)=x^{n}-A x^{n-1}+B x^{n-2}-C x^{n-3}+\cdots \pm N
$$

factors as $p(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)$. Then

$$
\begin{aligned}
& \sum_{k=1}^{n} r_{k}=A \\
& \sum_{k=1}^{n} r_{k}^{2}=A \sum_{k=1}^{n} r_{k}-2 B \\
& \sum_{k=1}^{n} r_{k}^{3}=A \sum_{k=1}^{n} r_{k}^{2}-B \sum_{k=1}^{n} r_{k}+3 C \\
& \sum_{k=1}^{n} r_{k}^{4}=A \sum_{k=1}^{n} r_{k}^{3}-B \sum_{k=1}^{n} r_{k}^{2}+C \sum_{k=1}^{n} r_{k}-4 D
\end{aligned}
$$

Sequences \& Series of Functions

Definition (Pointwise Convergence)

- A sequence of functions $\left\{f_{n}\right\}$ converges to $f(x)$ at a point $x \in \operatorname{dom}(f)$ iff for any $\epsilon>0$, there is an $N=N(x, \epsilon) \in \mathbb{N}$ such that $n>N$ implies $\left|f_{n}(x)-f(x)\right|<\epsilon$.
- A series of functions $\sum_{k=0}^{\infty} f_{k}$ converges to $f(x)$ at a point $x \in \operatorname{dom}(f)$ iff for any $\epsilon>0$, there is an $N=N(x, \epsilon) \in \mathbb{N}$ such that $n>N$ implies $\left|\sum_{k=0}^{n} f_{k}(x)-f(x)\right|<\epsilon$.

Definition (Uniform Convergence)

- A sequence (series) of functions $\left\{S_{n}\right\}$ converges uniformly to $S(x)$ for every $x \in \operatorname{dom}(S)$ iff for any $\epsilon>0$, there is an $N=N(\epsilon) \in \mathbb{N}$ such that $n>N$ implies $\left|S_{n}(x)-f(x)\right|<\epsilon$.

A Sequence of Functions

Example

Uniform Convergence and Integration

Theorem

If f_{n} is integrable on $[a, b]$ for all n and $f_{n} \rightarrow f$ uniformly, then f is integrable and

$$
\int_{a}^{b} \lim _{n \rightarrow \infty} f_{n}(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x
$$

Theorem

If f_{n} is integrable on $[a, b]$ for all n and $\sum f_{n}$ converges uniformly, then the sum is integrable and

$$
\int_{a}^{b} \sum_{n=0}^{\infty} f_{n}(x) d x=\sum_{n=0}^{\infty} \int_{a}^{b} f_{n}(x) d x
$$

A Good Sequence of Functions

Example

- Find $\int f_{n}, \lim _{n} f_{n}, \lim _{n} \int f_{n}$, and $\int \lim _{n} f_{n}$.

A Bad Sequence of Functions

Example

- Find $\int f_{n}, \lim _{n} f_{n}, \lim _{n} \int f_{n}$, and $\int \lim _{n} f_{n}$.

Uniform Convergence and Differentiation

Differentiation does not behave as well as integration.

Example

Let $f_{n}(x)=\frac{1}{n} \sin \left(n^{2} x\right)$. Show that

- f_{n} converges uniformly on \mathbb{R}
- f_{n}^{\prime} doesn't even converge pointwise anywhere.

Theorem

Suppose $f_{n}:[a, b] \rightarrow \mathbb{R}$ is differentiable for all n and $f_{n}\left(x_{0}\right)$ converges for some point $x_{0} \in[a, b]$. If f_{n}^{\prime} converges uniformly on $[a, b]$, then f_{n} converges uniformly on $[a, b]$ and

$$
\frac{d}{d x} \lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{d}{d x} f_{n}(x)
$$

The Best Uniform Convergence Test

The Weierstrass M-test provides a very useful method for testing uniform convergence.

Theorem (The Weierstrass M-Test)

Let f_{n} be a sequence of functions. If there is a sequence of constants M_{n} such that

- $\left|f_{n}(x)\right| \leq M_{n}$ for all $n \in \mathbb{N}$ and
- $\sum_{n=1}^{\infty} M_{n}$ converges,
then $\sum_{n=1}^{\infty} f_{n}$ converges uniformly (and absolutely).

1. Does $\sum_{n} f_{n}(x)$ converge where $f_{n}(x)=\frac{1}{n^{2}} \sin \left(n^{2} x\right)$?
2. Why doesn't the test work for f_{n}^{\prime} ?

A Series of Steps

Example

$$
S(x)=\sum_{k=1}^{\infty} \frac{1}{k^{2}} \cdot U\left(x-\frac{1}{k}\right)
$$

The Rationals Are a Small Set

Theorem

The rationals are countable.

Proof.

Let \mathbb{Q} represent the set of rational numbers. The array below shows a method of enumerating all the rationals.

$$
\begin{array}{ccccc}
1 / 1_{(1)} & 2 / 1_{(2)} & 3 / 1_{(4)} & 4 / 1_{(7)} & \ldots \\
1 / 2_{(3)} & 2 / 2_{(5)} & 3 / 2_{(8)} & 4 / 2_{(12)} & \cdots \\
1 / 3_{(6)} & 2 / 3_{(9)} & 3 / 3_{(13)} & 4 / 3_{(18)} & \cdots \\
1 / 4_{(10)} & 2 / 4_{(14)} & 3 / 4_{(19)} & 4 / 4_{(25)} & \cdots
\end{array}
$$

Since each rational is counted, we have $|\mathbb{Q}| \leq|\mathbb{N}|$ where we use $|\cdot|$ to indicate cardinality (or size). But we know that $\mathbb{N} \subseteq \mathbb{Q}$, so that $|\mathbb{N}| \leq|\mathbb{Q}|$. Hence $|\mathbb{Q}|=|\mathbb{N}|$.

Open Covers

Definition

An open cover of a set A is a collection of open sets $\left\{O_{n} \mid n \in \mathcal{N}\right\}$ such that

$$
A \subseteq \bigcup_{n \in \mathcal{N}} O_{n}
$$

Example

- The collection $\{(0,2),(3,4)\}$ is an open cover of $A=[0.5,1.5] \cup\{3.25,3.5,3.75\}$.
- The collection $\{(n-1 / 4, n+1 / 4) \mid n \in \mathbb{N}\}$ is an open cover of \mathbb{N}.
- $\{\mathbb{R}\}$ is an open cover of \mathbb{R}.

Covering \mathbb{Q}

Theorem

The rationals have an open cover of arbitrarily small total length.

Proof.

Let $\epsilon>0$. List the rationals in order $\mathbb{Q}=\left\{r_{1}, r_{2}, r_{3}, \ldots\right\}$ as given by the "countability matrix" defined earlier. For each rational r_{k}, define the open interval $I_{k}=\left(r_{k}-\epsilon / 2^{k+1}, r_{k}+\epsilon / 2^{k+1}\right)$. Then

- the collection $\mathcal{C}=\left\{I_{k} \mid k \in \mathbb{N}\right\}$ forms an open cover of \mathbb{Q},
- the length of each I_{k} is $m\left(I_{k}\right)=\epsilon / 2^{k}$.

The total length of the intervals in \mathcal{C} is

$$
m(\mathcal{C})=\sum_{k=1}^{\infty} m\left(I_{k}\right)=\sum_{k=1}^{\infty} \epsilon / 2^{k}=\epsilon \sum_{k=1}^{\infty} \frac{1}{2^{k}}=\epsilon
$$

Measure Zero

Definition

A set $S \subset \mathbb{R}$ has measure zero, written as $m(S)=0$, if and only if for any $\epsilon>0$ there is an open cover $\mathcal{C}=\left\{O_{k} \mid k \in \mathcal{N}\right\}$ of S such that $\sum_{k \in \mathcal{N}} m\left(O_{k}\right)<\epsilon$.

Example

1. The rationals have measure zero.
2. Any finite set has measure zero.
3. Every interval $[a, b]$ is not measure zero (when $a<b$).

- Assume the measure of $[0,1]$ is 1 . The rationals contained in $[0,1]$ have measure zero. What do you conjecture the measure of the irrationals in $[0,1]$ is?

A Brief Introduction to Lebesgue Measure

The Riemann integral cannot handle functions like Dirichlet's everywhere discontinuous characteristic function of the rationals; i.e., $\chi(x)=\{1$ if $x \in \mathbb{Q}, 0$ otherwise $\}$. Lebesgue introduced a measure based on the length of intervals containing the set. There are sets that cannot be measured (but that is beyond our scope). Lebesgue's measure has the following properties:

Theorem

Let S, S_{n}, and T all be measurable, then:

1. $\mu(S) \geq 0$.
2. If $S \subseteq T$, then $\mu(S) \leq \mu(T)$.
3. If $S \cap T=\emptyset$, then $\mu(S \cup T)=\mu(S)+\mu(T)$.
4. $\mu(S \cup T) \leq \mu(S)+\mu(T)$.
5. $\mu\left(\bigcup_{n=1}^{\infty} S_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(S_{n}\right)$.

Building Lebesgue Measure

The basic idea is to start with intervals and use open covers to build to more complex sets. (We won't go into real generality.)

Definition

- Define $\mu(I)=b-a$ for the open interval $I=(a, b)$ where $a \leq b$.
- For a set E, define $\mu^{*}(E)=\inf _{\mathcal{O}} \sum \mu\left(I_{n}\right)$ where $\mathcal{O}=\left\{I_{n}\right\}$ forms an open cover of E.
- Define $\mu(E)=\mu^{*}(E)$ and call E measurable iff for each set A, we have

$$
\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)
$$

1. Show that $\mu([a, b])=b-a$.
2. Show that $\mu\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right)=0$ for any finite set..

Theorem (TFAE)

1. E is measurable.
2. Given $\epsilon>0$, there is an open set G such that $\mu^{*}(G-E)<\epsilon$.
3. Given $\epsilon>0$, there is an closed set F such that $\mu^{*}(E-F)<\epsilon$.

Building the Lebesgue Integral

Definition

- The characteristic function of a set E is

$$
\chi_{E}(x)=\{1 \text { if } x \in E, \quad 0 \text { otherwise }\} .
$$

- A simple function is a function of the form

$$
\phi(x)=\sum_{k=1}^{n} a_{i} \cdot \chi_{E_{i}}(x)
$$

where each E_{i} is measurable and n is finite.

- If ϕ and $E=\cup E_{k}$ are bounded, define

$$
\int_{E} \phi=\sum_{k=1}^{n} a_{i} \cdot \mu\left(E_{i}\right)
$$

- If f is measurable and bounded on a bounded set E, define

$$
\int_{E} f=\inf _{\phi} \int_{E} \phi
$$

for all simple functions $\phi \geq f$.

Lebesgue Integral Example

Example

Special Functions - The Gamma Function

Recall the definition of the Gamma function.

Definition

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

This special function that extends the factorial has many interesting properties.
Theorem

- $\Gamma(1 / 2)=\sqrt{\pi}$
(u-substitution)
- $\Gamma(x+1)=x \cdot \Gamma(x)$ for $x>0$
(integrate by parts)
(recursion)
- $\Gamma(x+1) \approx(x / e)^{x} \sqrt{2 \pi x}$ which implies $n!\approx(n / e)^{n} \sqrt{2 \pi n}$
(Stirling's formula)

The Gamma Function

Example

A plot of $\Gamma(x)$ in $[-4.5,5] \times[-20,20]$.

Fourier Series

Jean Baptiste Joseph Fourier developed trigonometric series as representations/approximations for, he claimed, any periodic function in his 1822 book Théorie analytique de la chaleur (Analytical Theory of Heat). He was surprisingly close to being right.

Definition

The Fourier series of a 2π-periodic function $f(x)$ is given by ${ }^{2}$

$$
\hat{f}(x)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k x)+b_{k} \sin (k x)
$$

Some texts replace a_{0} with $a_{0} / 2$ for convenience. (In 1824, he postulated warming of the atmosphere by gases which is now called the greenhouse effect.)

[^0]
The Fourier Coefficients

In order to calculate the Fourier coefficients, we need several facts that we have already shown to be true (cf. pg. 21).

Theorem

- $\int_{-\pi}^{+\pi} \sin (n x) \cos (k x) d x=0$ for all n and k.
- $\int_{-\pi}^{+\pi} \sin (n x) \sin (k x) d x=0$ for $n \neq k$.
- $\int_{-\pi}^{+\pi} \cos (n x) \cos (k x) d x=0$ for $n \neq k$.
- $\int_{-\pi}^{+\pi} \sin ^{2}(n x) d x= \begin{cases}\pi & n \neq 0 \\ 0 & n=0\end{cases}$
- $\int_{-\pi}^{+\pi} \cos ^{2}(n x) d x= \begin{cases}\pi & n \neq 0 \\ 2 \pi & n=0\end{cases}$

Fourier's Computation, I

Fourier's calculations run roughly as follows:
Multiply the series by $\cos (n x)$

$$
f(x) \cos (n x)=a_{0} \cos (n x)+\sum_{k=1}^{\infty} a_{k} \cos (k x) \cos (n x)+b_{k} \sin (k x) \cos (n x)
$$

Integrate from $-\pi$ to $+\pi$

$$
\begin{aligned}
\int_{-\pi}^{+\pi} f(x) \cos (n x) d x & =\int_{-\pi}^{+\pi} a_{0} \cos (n x) d x \\
& +\int_{-\pi}^{+\pi} \sum_{k=1}^{\infty} a_{k} \cos (k x) \cos (n x)+b_{k} \sin (k x) \cos (n x) d x
\end{aligned}
$$

Interchange operations (!) (What conditions are necessary here?)

$$
\begin{aligned}
& \int_{-\pi}^{+\pi} f(x) \cos (n x) d x=\int_{-\pi}^{+\pi} a_{0} \cos (n x) d x \\
& \quad+\sum_{k=1}^{\infty}\left[\int_{-\pi}^{+\pi} a_{k} \cos (k x) \cos (n x) d x+\int_{-\pi}^{+\pi} b_{k} \sin (k x) \cos (n x) d x\right]
\end{aligned}
$$

Fourier's Computation, II

Now we apply the previous facts to see all the terms disappear but for the one with $k=n$

$$
\begin{aligned}
\int_{-\pi}^{+\pi} f(x) & \cos (n x) d x=\int_{-\pi}^{+\pi} a_{0} \cos (n x) d x \\
& +\int_{-\pi}^{+\pi} a_{n} \cos (n x) \cos (n x) d x+\int_{-\pi}^{+\pi} b_{k} \sin (n x) \cos (n x) d x
\end{aligned}
$$

If $n>0$, then

$$
\int_{-\pi}^{+\pi} f(x) \cos (n x) d x=\int_{-\pi}^{+\pi} a_{n} \cos ^{2}(n x) d x=a_{n} \pi
$$

If $n=0$, then

$$
\int_{-\pi}^{+\pi} f(x) d x=\int_{-\pi}^{+\pi} a_{0} d x=a_{0} 2 \pi
$$

Solve for a_{n} and a_{0}, respectively. Do the same for b_{n}.

Fourier's Computation, III

Based on Fourier's calculations, we arrive at

Definition

The Fourier series of a 2π-periodic function $f(x)$ is given by

$$
\hat{f}(x)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k x)+b_{k} \sin (k x)
$$

where

$$
\begin{aligned}
a_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{+\pi} f(x) d x \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) \cos (n x) d x, \quad n>0 \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) \sin (n x) d x, \quad n>0
\end{aligned}
$$

Series Examples

$f(x)=x$	$\hat{f}(x)=2 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n x)}{n}$
$f(x)=\|x\|$	$\hat{f}(x)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos ((2 n-1) x)}{(2 n-1)^{2}}$
$f(x)=\left\{\begin{array}{cc\|}+1 & 0<x<\pi \\ -1 & -\pi<x<0\end{array}\right.$	$\hat{f}(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin ((2 n-1) x)}{(2 n-1)}$
$f(x)=x^{2}$	$\hat{f}(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos (n x)}{n^{2}}$
$f(x)=\sin ^{2}(x)$	$\hat{f}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x)$

Table: Several Fourier Series

A Fourier Series

Example

A plot of $f(x)$ and 3 Fourier approximants in $[-\pi,+\pi] \times[-2,2]$.

[^0]: ${ }^{2}$ Most texts use a_{n} with \cos and b_{n} with \sin.

